|
|
Line 1: |
Line 1: |
| {| class=wikitable align=right width=500
| |
| |- align=center
| |
| |[[File:8-cube_t7.svg|120px]]<BR>[[8-orthoplex]]<BR>{{CDD|node_1|3|node|3|node|3|node|3|node|3|node|3|node|4|node}}
| |
| |[[File:8-cube_t6.svg|120px]]<BR>Rectified 8-orthoplex<BR>{{CDD|node|3|node_1|3|node|3|node|3|node|3|node|3|node|4|node}}
| |
| |[[File:8-cube_t5.svg|120px]]<BR>Birectified 8-orthoplex<BR>{{CDD|node|3|node|3|node_1|3|node|3|node|3|node|3|node|4|node}}
| |
| |[[File:8-cube_t4.svg|120px]]<BR>Trirectified 8-orthoplex<BR>{{CDD|node|3|node|3|node|3|node_1|3|node|3|node|3|node|4|node}}
| |
| |- align=center
| |
| |[[File:8-cube_t3.svg|120px]]<BR>[[Trirectified 8-cube]]<BR>{{CDD|node|3|node|3|node|3|node|3|node_1|3|node|3|node|4|node}}
| |
| |[[File:8-cube_t2.svg|120px]]<BR>[[Birectified 8-cube]]<BR>{{CDD|node|3|node|3|node|3|node|3|node|3|node_1|3|node|4|node}}
| |
| |[[File:8-cube_t1.svg|120px]]<BR>[[Rectified 8-cube]]<BR>{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node_1|4|node}}
| |
| |[[File:8-cube_t0.svg|120px]]<BR>[[8-cube]]<BR>{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node|4|node_1}}
| |
| |-
| |
| !colspan=4|[[Orthogonal projection]]s in A<sub>8</sub> [[Coxeter plane]]
| |
| |}
| |
| In eight-dimensional [[geometry]], a '''rectified 8-orthoplex''' is a convex [[uniform 8-polytope]], being a [[Rectification (geometry)|rectification]] of the regular [[8-orthoplex]].
| |
|
| |
|
| There are unique 8 degrees of rectifications, the zeroth being the [[8-orthoplex]], and the 7th and last being the [[8-cube]]. Vertices of the rectified 8-orthoplex are located at the edge-centers of the 8-orthoplex. Vertices of the birectified 8-orthoplex are located in the triangular face centers of the 8-orthoplex. Vertices of the trirectified 8-orthoplex are located in the [[tetrahedron|tetrahedral]] cell centers of the 8-orthoplex.
| |
|
| |
|
| == Rectified 8-orthoplex ==
| | The goal is to work reviewing the facts of the felony charge, can save you and all of individuals and companies charged with [http://www.sharkbayte.com/keyword/criminal+conduct criminal conduct] If you loved this short article and you would like to get much more information pertaining to [http://beigedefenseattorneymonkey.doppelcarport.net insurance Defense attorneys in Dallas tx] kindly visit the web page. . |
| {| class="wikitable" align="right" style="margin-left:10px" width="250"
| |
| !bgcolor=#e7dcc3 colspan=2|Rectified 8-orthoplex
| |
| |-
| |
| |bgcolor=#e7dcc3|Type||[[uniform 8-polytope]]
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Schläfli symbol]]|| t<sub>1</sub>{3,3,3,3,3,3,4}
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]s||{{CDD|node|3|node_1|3|node|3|node|3|node|3|node|3|node|4|node}}<br>{{CDD|node|3|node_1|3|node|3|node|3|node|3|node|split1|nodes}}
| |
| |-
| |
| |bgcolor=#e7dcc3|7-faces||272
| |
| |-
| |
| |bgcolor=#e7dcc3|6-faces||3072
| |
| |-
| |
| |bgcolor=#e7dcc3|5-faces||8960
| |
| |-
| |
| |bgcolor=#e7dcc3|4-faces||12544
| |
| |-
| |
| |bgcolor=#e7dcc3|Cells||10080
| |
| |-
| |
| |bgcolor=#e7dcc3|Faces||4928
| |
| |-
| |
| |bgcolor=#e7dcc3|Edges||1344
| |
| |-
| |
| |bgcolor=#e7dcc3|Vertices||112
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Vertex figure]]||6-orthoplex prism
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Petrie polygon]]||[[hexakaidecagon]]
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Coxeter group]]s||C<sub>8</sub>, [4,3<sup>6</sup>]<BR>D<sub>8</sub>, [3<sup>5,1,1</sup>]
| |
| |-
| |
| |bgcolor=#e7dcc3|Properties||[[Convex polytope|convex]]
| |
| |}
| |
| | |
| The rectified 8-orthoplex has 112 vertices. These represent the root vectors of the [[simple Lie group]] D<sub>8</sub>. The vertices can be seen in 3 [[hyperplane]]s, with the 28 vertices [[rectified 7-simplex]]s cells on opposite sides, and 56 vertices of an [[expanded 7-simplex]] passing through the center. When combined with the 16 vertices of the 8-orthoplex, these vertices represent the 128 root vectors of the B<sub>8</sub> and C<sub>8</sub> simple Lie groups. | |
| === Related polytopes ===
| |
| | |
| The ''rectified 8-orthoplex'' is the [[vertex figure]] for the [[demiocteractic honeycomb]].
| |
| : {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node|split1|nodes}} or {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node|3|node|4|node}}
| |
| | |
| === Alternate names===
| |
| * rectified octacross
| |
| * rectified diacosipentacontahexazetton (Acronym: rek) (Jonathan Bowers)<ref>Klitzing, (o3x3o3o3o3o3o4o - rek)</ref>
| |
| | |
| === Construction ===
| |
| | |
| There are two [[Coxeter group]]s associated with the ''rectified 8-orthoplex'', one with the C<sub>8</sub> or [4,3<sup>6</sup>] Coxeter group, and a lower symmetry with two copies of heptcross facets, alternating, with the D<sub>8</sub> or [3<sup>5,1,1</sup>] Coxeter group.
| |
| | |
| === Cartesian coordinates ===
| |
| [[Cartesian coordinates]] for the vertices of a rectified 8-orthoplex, centered at the origin, edge length <math>\sqrt{2}</math> are all permutations of:
| |
| : (±1,±1,0,0,0,0,0,0)
| |
| | |
| === Images ===
| |
| {{8-cube Coxeter plane graphs|t6|150}}
| |
| | |
| == Birectified 8-orthoplex==
| |
| {| class="wikitable" align="right" style="margin-left:10px" width="250"
| |
| !bgcolor=#e7dcc3 colspan=2|Birectified 8-orthoplex
| |
| |-
| |
| |bgcolor=#e7dcc3|Type||[[uniform 8-polytope]]
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Schläfli symbol]]|| t<sub>2</sub>{3,3,3,3,3,3,4}
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]s||{{CDD|node|3|node|3|node_1|3|node|3|node|3|node|3|node|4|node}}<br>{{CDD|node|3|node|3|node_1|3|node|3|node|3|node|split1|nodes}}
| |
| |-
| |
| |bgcolor=#e7dcc3|7-faces||
| |
| |-
| |
| |bgcolor=#e7dcc3|6-faces||
| |
| |-
| |
| |bgcolor=#e7dcc3|5-faces||
| |
| |-
| |
| |bgcolor=#e7dcc3|4-faces||
| |
| |-
| |
| |bgcolor=#e7dcc3|Cells||
| |
| |-
| |
| |bgcolor=#e7dcc3|Faces||
| |
| |-
| |
| |bgcolor=#e7dcc3|Edges||
| |
| |-
| |
| |bgcolor=#e7dcc3|Vertices||
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Vertex figure]]||{3,3,3,4}x{3}
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Coxeter group]]s||C<sub>8</sub>, [3,3,3,3,3,3,4]<BR>D<sub>8</sub>, [3<sup>5,1,1</sup>]
| |
| |-
| |
| |bgcolor=#e7dcc3|Properties||[[Convex polytope|convex]]
| |
| |}
| |
| | |
| === Alternate names===
| |
| * birectified octacross
| |
| * birectified diacosipentacontahexazetton (Acronym: bark) (Jonathan Bowers)<ref>Klitzing, (o3o3x3o3o3o3o4o - bark)</ref>
| |
| === Cartesian coordinates ===
| |
| [[Cartesian coordinates]] for the vertices of a birectified 8-orthoplex, centered at the origin, edge length <math>\sqrt{2}</math> are all permutations of:
| |
| : (±1,±1,±1,0,0,0,0,0)
| |
| | |
| === Images ===
| |
| {{8-cube Coxeter plane graphs|t5|150}}
| |
| | |
| == Trirectified 8-orthoplex==
| |
| {| class="wikitable" align="right" style="margin-left:10px" width="250"
| |
| !bgcolor=#e7dcc3 colspan=2|Trirectified 8-orthoplex
| |
| |-
| |
| |bgcolor=#e7dcc3|Type||[[uniform 8-polytope]]
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Schläfli symbol]]|| t<sub>3</sub>{3,3,3,3,3,3,4}
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]s||{{CDD|node|3|node|3|node|3|node_1|3|node|3|node|3|node|4|node}}<br>{{CDD|node|3|node|3|node|3|node_1|3|node|3|node|split1|nodes}}
| |
| |-
| |
| |bgcolor=#e7dcc3|7-faces||
| |
| |-
| |
| |bgcolor=#e7dcc3|6-faces||
| |
| |-
| |
| |bgcolor=#e7dcc3|5-faces||
| |
| |-
| |
| |bgcolor=#e7dcc3|4-faces||
| |
| |-
| |
| |bgcolor=#e7dcc3|Cells||
| |
| |-
| |
| |bgcolor=#e7dcc3|Faces||
| |
| |-
| |
| |bgcolor=#e7dcc3|Edges||
| |
| |-
| |
| |bgcolor=#e7dcc3|Vertices||
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Vertex figure]]||{3,3,4}x{3,3}
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Coxeter group]]s||C<sub>8</sub>, [3,3,3,3,3,3,4]<BR>D<sub>8</sub>, [3<sup>5,1,1</sup>]
| |
| |-
| |
| |bgcolor=#e7dcc3|Properties||[[Convex polytope|convex]]
| |
| |}
| |
| The '''trirectified 8-orthoplex''' can [[tessellation|tessellate]] space in the [[quadrirectified 8-cubic honeycomb]].
| |
| | |
| === Alternate names===
| |
| * trirectified octacross
| |
| * trirectified diacosipentacontahexazetton (acronym: tark) (Jonathan Bowers)<ref>Klitzing, (o3o3o3x3o3o3o4o - tark)</ref>
| |
| | |
| === Cartesian coordinates ===
| |
| [[Cartesian coordinates]] for the vertices of a trirectified 8-orthoplex, centered at the origin, edge length <math>\sqrt{2}</math> are all permutations of:
| |
| : (±1,±1,±1,±1,0,0,0,0)
| |
| | |
| === Images ===
| |
| {{8-cube Coxeter plane graphs|t4|150}}
| |
| | |
| == Notes==
| |
| {{reflist}}
| |
| | |
| == References==
| |
| * [[Harold Scott MacDonald Coxeter|H.S.M. Coxeter]]:
| |
| ** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973
| |
| ** '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
| |
| *** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380-407, MR 2,10]
| |
| *** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559-591]
| |
| *** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3-45]
| |
| * [[Norman Johnson (mathematician)|Norman Johnson]] ''Uniform Polytopes'', Manuscript (1991)
| |
| ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D.
| |
| * {{KlitzingPolytopes|polyzetta.htm|8D|uniform polytopes (polyzetta)}} o3x3o3o3o3o3o4o - rek, o3o3x3o3o3o3o4o - bark, o3o3o3x3o3o3o4o - tark
| |
| | |
| == External links ==
| |
| *{{GlossaryForHyperspace | anchor=Cross | title=Cross polytope }}
| |
| * [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions]
| |
| * [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
| |
| | |
| {{Polytopes}}
| |
| | |
| [[Category:8-polytopes]]
| |