Superstring theory: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>HNAKXR
en>ClueBot NG
m Reverting possible vandalism by BakedLikaBiscuit to version by Lamro. False positive? Report it. Thanks, ClueBot NG. (2061020) (Bot)
 
Line 1: Line 1:
[[Image:Mobius configuration.png|thumb|right|225px|Example of Möbius configuration; the face planes of red tetrahedron are shown on the top of the image; the blue one on the bottom.
I am Alta from Zwolle. I am learning to play the Lute. Other hobbies are Insect collecting.<br>xunjie バスルームには13の服のスタイルも良いですが、
The vertex coordinates of the red tetrahedron are: <math>(0,0,0),</math> <math>(0,0,1),</math> <math>(0,1,0)</math> and <math>(1,0,0)</math>. The vertex coordinates of the blue tetrahedron are <math>(0, -\gamma, \gamma),</math> <math>(\gamma, 0, -\gamma), </math> <math>(-\gamma, \gamma, 0)</math> and <math>(\lambda, \lambda, \lambda),</math> where <math>\gamma = \frac{1}{\sqrt{2}}</math> and <math>\lambda=\frac{1}{3}</math>.]]
美しい柔らかい夏2014プリンセスチュチュドレスズキズキ蝶香りのバラにとどまる。
あなたはスターハンは考えられないでしょう......車両を話すことはありません、 [http://athenavineyards.com/media/duvetica.php ��󥯥�`�� ��ǥ��`��] 多くの高級デザイナーブランドだけ深く東西文化の押印によってマークブランドのスタイルを作るアジア系の女性が持っている。
今年の前にペルー分岐予測との報告を発表し、
大手ノーティカは遠い地平線に到着した。 [http://avtospetstrans.by/Controls/catalog/new/shop/goros.html ����`�� ؔ�� ͨ؜] 彼女のDVBのジーンズとサングラスを開始した前しかし、
参加[ニュース中国の靴ネットワーク]に参加靴は、
セキュリティ上の問題が気にするこの方法の手術をもたらす可能性があります。[http://belpars.by/Files/Config/tp/new/best/toms.html TOMS ����`�� �����] それぞれの作品が見事な衣装のジェスチャーに満ちているように、
フィットトップスとプリントパンツに注目すると、
幸福日:2013年8月24日11時〇四分35秒真実ではない。
男性と女性の完全なシリーズブランド首謀JAPAN 2012の秋と冬の衣類ラインを含めて、 [http://www.tobler-verlag.ch/media/galerie/jp/shop/nb/ �˥�`�Х<br><br>� ���˩`���`]


In [[geometry]], the '''Möbius configuration''' or '''Möbius tetrads''' is a certain [[Configuration (geometry)|configuration]] in [[Euclidean space]] or projective space, consisting of two mutually [[Inscribed figure|inscribed]] [[tetrahedron|tetrahedra]]: each vertex of one tetrahedron lies on a face plane of the other tetrahedron and vice versa. Thus, for the resulting system of eight points and eight planes, each point lies on four planes (the three planes defining it as a vertex of a tetrahedron and the fourth plane from the other tetrahedron that it lies on), and each plane contains four points (the three tetrahedron vertices of its face, and the vertex from the other tetrahedron that lies on it).
my blog post; [http://bigapplefilmfestival.com/css/shop/Duvetica.php マックスマーラ ウィークエンド]
 
==Möbius's theorem==
The configuration is named after [[August Ferdinand Möbius]], who in 1828 proved that, if two tetrahedra have the property that seven of their vertices lie on corresponding face planes of the other tetrahedron, then the eighth vertex also lies on the plane of its corresponding face, forming a configuration of this type. This [[incidence theorem]] is true more generally in a three-dimensional projective space if and only if [[Pappus's hexagon theorem|Pappus's theorem]] holds for that space ([[Kurt Reidemeister|Reidemeister]], [[Erich Schönhardt|Schönhardt]]), and it is true for a three-dimensional space modeled on a [[division ring]] if and only if the ring satisfies the [[commutativity|commutative law]] and is therefore a [[Field (mathematics)|field]] (Al-Dhahir). By [[projective duality]], Möbius' result is equivalent to the statement that, if seven of the eight face planes of two tetrahedra contain the corresponding vertices of the other tetrahedron, then the eighth face plane also contains the same vertex.
 
==Construction==
{{harvtxt|Coxeter|1950}} describes a simple construction for the configuration. Beginning with an arbitrary point ''p'' in Euclidean space, let ''A'', ''B'', ''C'', and ''D'' be four planes through ''p'', no three of which share a common intersection line, and place the six points ''q'', ''r'', ''s'', ''t'', ''u'', and ''v'' on the six lines formed by pairwise intersection of these planes in such a way that no four of these points are coplanar. For each of the planes ''A'', ''B'', ''C'', and ''D'', four of the seven points ''p'', ''q'', ''r'', ''s'', ''t'', ''u'', and ''v'' lie on that plane and three are disjointed from it; form planes ''A’'', ''B’'', ''C’'', and ''D’'' through the triples of points disjoint from ''A'', ''B'', ''C'', and ''D'' respectively. Then, by the dual form of Möbius' theorem, these four new planes meet in a single point ''w''. The eight points ''p'', ''q'', ''r'', ''s'', ''t'', ''u'', ''v'', and ''w'' and the eight planes ''A'', ''B'', ''C'', ''D'', ''A’'', ''B’'', ''C’'', and ''D’'' form an instance of Möbius' configuration.
 
==Related constructions==
{{harvtxt|Hilbert|Cohn-Vossen|1952}} state (without references) that there are five configurations having eight points and eight planes with four points on every plane and four planes through every point that are realisable in three-dimensional
Euclidean space: such configurations have the shorthand notation <math>8_4</math>.
They must have obtained their information from the article by {{harvs|first=Ernst|last=Steinitz|authorlink=Ernst Steinitz|year=1910|txt}}.
This actually states, depending upon results by {{harvs|first=P.|last=Muth|year=1892|txt}}, {{harvs|first=G.|last=Bauer|year=1897|txt}}, and {{harvs|first=V.|last=Martinetti|year=1897|txt}}, that there are five  <math>8_4</math> configurations with the property that
at most two planes have two points in common, and dually at most two points are common to two planes.  (This condition means that every three points may be non-collinear and dually three planes may not have a line in common.)
However, there are ten other <math>8_4</math> configurations that do not have this condition, and all fifteen configurations are realizable in real three-dimensional space.  The configurations of interest are those with two tetrahedra, each inscribing and circumscribing the other, and these are precisely those that satisfy the above property.  Thus, there are five configurations with tetrahedra, and they correspond to the five conjugacy classes of the symmetric group <math>S_4</math>.
One obtains a permutation from the four points of one tetrahedron S = ABCD to itself as follows: each point P of S is on a plane containing three points of the second tetrahedron T.  This leaves the other point of T, which is on three points of a plane of S,
leaving another point Q of S, and so the permutation maps P → Q.  The five conjugacy classes have representatives e, (12)(34), (12), (123), (1234) and, of these, the Möbius configuration corresponds to the conjugacy class e.  It could be denoted Ke.
It is stated by Steinitz that if two of the complementary tetrahedra of Ke are <math>A_0,B_0,C_0,D_0</math>, and <math>A_1,B_1,C_1,D_1</math> then the eight planes are given by <math>A_i,B_j,C_k,D_l</math> with
<math>i+j+k+l</math> odd, while the even sums and their complements correspond to all pairs of complementary tetrahedra that in- and circumscribe in the model of Ke.
 
It is also stated that by Steinitz that the only <math>8_4</math> that is a geometrical theorem is the Möbius configuration.  However that is disputed:
{{harvtxt|Glynn|2010}} shows using a computer search and proofs that there are precisely two <math>8_4</math> that are actually "theorems": the Möbius configuration
and one other. The latter (which corresponds to the conjugacy class (12)(34) above) is also a theorem for all three-dimensional projective spaces over a [[Field (mathematics)|field]], but not over a general [[division ring]].  There are other close similarities between the two configurations, including the fact
that both are self-dual under [[Matroid|Matroid duality]].  In abstract terms, the latter configuration has "points" 0,...,7 and "planes" 0125+i, (i = 0,...,7), where these integers are modulo eight.  This configuration, like Möbius, can also be represented
as two tetrahedra, mutually inscribed and circumscribed: in the integer representation the tetrahedra can be 0347 and 1256.  However, these two <math>8_4</math> configurations are non-isomorphic, since Möbius has four pairs of disjoint planes,
while the latter one has no disjoint planes.  For a similar reason (and because pairs of planes are degenerate quadratic surfaces), the Möbius configuration is on more quadratic surfaces of three-dimensional space than the latter configuration.
 
The [[Levi graph]] of the Möbius configuration has 16 vertices, one for each point or plane of the configuration, with an edge for every incident point-plane pair. It is isomorphic to the 16-vertex [[hypercube graph]] ''Q''<sub>4</sub>. A closely related configuration, the [[Möbius–Kantor configuration]] formed by two mutually inscribed quadrilaterals, has the [[Möbius–Kantor graph]], a subgraph of ''Q''<sub>4</sub>, as its Levi graph.
 
==References==
*{{citation
| last = Al-Dhahir | first = M. W.
| issue = 334
| journal = The Mathematical Gazette
| pages = 241–245
| title = A class of configurations and the commutativity of multiplication
| jstor = 3609605
| volume = 40
| year = 1956
| doi = 10.2307/3609605
| publisher = The Mathematical Association}}.
*{{citation
| last = Bauer | first = G.
| journal = München Ber.
| pages = 359
| volume = 27
| year = 1897}}.
*{{citation
| last = Coxeter | first = H. S. M. | author-link = Harold Scott MacDonald Coxeter
| title = Self-dual configurations and regular graphs
| journal = Bulletin of the American Mathematical Society
| volume = 56 | issue = 5 | year = 1950 | pages = 413–455
| mr = 0038078 | doi = 10.1090/S0002-9904-1950-09407-5}}.
*{{citation
| last = Glynn | first = D. G.
| title = Theorems of points and planes in three-dimensional projective space
| journal = Journal of the Australian Mathematical Society
| volume = 88 | year = 2010 | pages = 75–92
| doi = 10.1017/S1446788708080981}}.
*{{citation
| last1 = Hilbert | first1 = David | author1-link = David Hilbert
| last2 = Cohn-Vossen | first2 = Stephan | author2-link = Stephan Cohn-Vossen
| edition = 2nd
| isbn = 0-8284-1087-9
| page = 184
| publisher = Chelsea
| title = Geometry and the Imagination
| year = 1952}}.
*{{citation
| last = Martinetti | first = V.
| journal = Giornale di Matematiche di Battaglini
| language = Italian
| title = Le configurazioni (8<sub>4</sub>,8<sub>4</sub>) di punti e piani
| pages = 81–100
| volume = 35
| url = http://books.google.com/books?id=_lJaAAAAYAAJ&pg=PA81
| year = 1897}}.
*{{citation
| last = Möbius | first = A. F. | author-link = August Ferdinand Möbius
| journal = [[Crelle's Journal|Journal für die reine und angewandte Mathematik]]
| title = Kann von zwei dreiseitigen Pyramiden einejede in Bezug auf die andere um- und eingeschriehen zugleich heissen?
| volume = 3
| year = 1828
| pages = 273–278}}. In ''Gesammelte Werke'' (1886), vol. 1, pp.&nbsp;439–446.
*{{citation
| last = Muth | first = P.
| journal = Zeitschrift Math. Phys.
| pages = 117
| volume = 37
| year = 1892}}.
*{{citation
| last = Reidemeister | first = K. | author-link = Kurt Reidemeister
| journal = Jahresbericht der Deutschen Mathematiker-Vereinigung
| pages = 71
| title = Zur Axiomatik der 3-dimensionalen projektive Geometrie
| volume = 38
| year = 1929}}.
*{{citation
| last = Reidemeister | first = K. | author-link = Kurt Reidemeister
| journal = Jahresbericht der Deutschen Mathematiker-Vereinigung
| pages = 48–50
| title = Aufgabe 63 (gestellt in Jahresbericht D. M. V. 38 (1929), 71 kursiv). Lösung von E. Schönhardt
| volume = 40
| year = 1931}}.
*{{citation
| last = Steinitz | first = Ernst | author-link = Ernst Steinitz
| journal = Enzyklopädie der mathematischen Wissenschaften
| pages = 492–494
| title = Konfigurationen der projektiven Geometrie.  6. Konfigurationen von Punkten und Ebenen
| volume = 3-1-1 A B 5a
| year = 1910}}.
 
{{DEFAULTSORT:Mobius Configuration}}
[[Category:Configurations]]

Latest revision as of 18:54, 11 December 2014

I am Alta from Zwolle. I am learning to play the Lute. Other hobbies are Insect collecting.
xunjie バスルームには13の服のスタイルも良いですが、 美しい柔らかい夏2014プリンセスチュチュドレスズキズキ蝶香りのバラにとどまる。 あなたはスターハンは考えられないでしょう......車両を話すことはありません、 [http://athenavineyards.com/media/duvetica.php ��󥯥�`�� ��ǥ��`��] 多くの高級デザイナーブランドだけ深く東西文化の押印によってマークブランドのスタイルを作るアジア系の女性が持っている。 今年の前にペルー分岐予測との報告を発表し、 大手ノーティカは遠い地平線に到着した。 [http://avtospetstrans.by/Controls/catalog/new/shop/goros.html ����`�� ؔ�� ͨ؜] 彼女のDVBのジーンズとサングラスを開始した前しかし、 参加[ニュース中国の靴ネットワーク]に参加靴は、 セキュリティ上の問題が気にするこの方法の手術をもたらす可能性があります。[http://belpars.by/Files/Config/tp/new/best/toms.html TOMS ����`�� �����] それぞれの作品が見事な衣装のジェスチャーに満ちているように、 フィットトップスとプリントパンツに注目すると、 幸福日:2013年8月24日11時〇四分35秒真実ではない。 男性と女性の完全なシリーズブランド首謀JAPAN 2012の秋と冬の衣類ラインを含めて、 [http://www.tobler-verlag.ch/media/galerie/jp/shop/nb/ �˥�`�Х

� ���˩`���`]

my blog post; マックスマーラ ウィークエンド