Cross-flow filtration: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Peter in s
en>Discospinster
m Reverted edits by 117.223.88.38 (talk) to last revision by Ndemarco (HG)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
In [[mathematics]], the '''Brunn–Minkowski theorem''' (or '''Brunn–Minkowski inequality''') is an inequality relating the volumes (or more generally [[Lebesgue measure]]s) of [[compact space|compact]] [[subset]]s of [[Euclidean space]]. The original version of the Brunn–Minkowski theorem ([[Hermann Brunn]] 1887; [[Hermann Minkowski]] 1896) applied to convex sets; the generalization to compact nonconvex sets stated here is due to [[Lazar Lyusternik|L. A. Lyusternik]] (1935).
Friends contact him Royal. Interviewing is what I do for a residing but I strategy on altering it. Playing crochet is a factor that I'm completely addicted to. Her family life in Delaware but she requirements to move simply because of her family.<br><br>my website car warranty; [http://nauri.biz/xe/test/937675 mouse click the up coming web site],
 
==Statement of the theorem==
Let ''n'' ≥ 1 and let ''μ'' denote the [[Lebesgue measure]] on '''R'''<sup>''n''</sup>. Let ''A'' and ''B'' be two nonempty compact subsets of '''R'''<sup>''n''</sup>. Then the following [[inequality (mathematics)|inequality]] holds:
 
:<math>[ \mu (A + B) ]^{1/n} \geq [\mu (A)]^{1/n} + [\mu (B)]^{1/n},</math>
 
where ''A'' + ''B'' denotes the [[Minkowski sum]]:
 
:<math>A + B := \{\, a + b \in \mathbb{R}^{n} \mid a \in A,\ b \in B \,\}.</math>
 
==Remarks==
The proof of the Brunn–Minkowski theorem establishes that the function
 
:<math>A \mapsto [\mu (A)]^{1/n}</math>
 
is [[concave function|concave]] in the sense that, for every pair of nonempty compact subsets ''A'' and ''B'' of '''R'''<sup>''n''</sup> and every 0 ≤ ''t'' ≤ 1,
 
:<math>\left[ \mu (t A + (1 - t) B ) \right]^{1/n} \geq t [ \mu (A) ]^{1/n} + (1 - t) [ \mu (B) ]^{1/n}.</math>
 
For [[convex set|convex]] sets ''A'' and ''B'', the inequality in the theorem is strict
for 0 < ''t'' < 1 unless ''A'' and ''B'' are [[homothetic]], i.e. are equal up to [[translation (geometry)|translation]] and [[Scaling (geometry)|dilation]].
 
==See also==
* [[Isoperimetric inequality]]
* [[Milman's reverse Brunn–Minkowski inequality]]
* [[Minkowski–Steiner formula]]
* [[Prékopa–Leindler inequality]]
* [[Vitale's random Brunn–Minkowski inequality]]
 
==References==
* {{cite journal | author=Brunn, H. | author-link=Hermann Brunn | title=Über Ovale und Eiflächen | year = 1887 | version=Inaugural Dissertation, München}}
*{{cite book
| last=Fenchel
| first=Werner
| author-link = Werner Fenchel
| coauthors=Bonnesen, Tommy
| title=Theorie der konvexen Körper
| series=Ergebnisse der Mathematik und ihrer Grenzgebiete
| volume=3
| publisher=1. Verlag von Julius Springer
| location=Berlin
| year=1934
}}
*{{cite book
| last=Fenchel
| first=Werner
| author-link=Werner Fenchel
| coauthors=Bonnesen, Tommy
| title=Theory of convex bodies
| publisher=L. Boron, C. Christenson and B. Smith. BCS Associates
| location=Moscow, Idaho
| year=1987
}}
* {{cite book | last=Dacorogna | first=Bernard | title=Introduction to the Calculus of Variations | publisher=Imperial College Press | location=London | year=2004 | isbn=1-86094-508-2 | unused_data=|ISBN status=May be invalid – please double check }}
* [[Heinrich Guggenheimer]] (1977) ''Applicable Geometry'', page 146, Krieger, Huntington ISBN 0-88275-368-1 .
* {{cite journal | last=Lyusternik | first=Lazar A. | authorlink=Lazar Lyusternik | title=Die Brunn–Minkowskische Ungleichnung für beliebige messbare Mengen | journal = Comptes Rendus (Doklady) de l'académie des Sciences de l'uRSS (Nouvelle Série) | volume = III | year = 1935 | pages = 55&ndash;58}}
* {{cite book | last=Minkowski | first=Hermann | authorlink=Hermann Minkowski | title = Geometrie der Zahlen | location = Leipzig | publisher = Teubner | year = 1896}}
* {{cite article|last=Ruzsa|first=Imre&nbsp;Z.|authorlink=Imre Z. Ruzsa|title=The Brunn–Minkowski inequality and nonconvex sets|journal=Geometriae Dedicata|volume=67|doi=10.1023/A:1004958110076 |doi=10.1023/A:1004958110076|year=1997|number=3|pages=337–348|mr=1475877}}
* Rolf Schneider, ''Convex bodies: the Brunn–Minkowski theory,'' Cambridge University Press, Cambridge, 1993.
 
{{DEFAULTSORT:Brunn-Minkowski theorem}}
[[Category:Theorems in measure theory]]
[[Category:Theorems in convex geometry]]
[[Category:Calculus of variations]]
[[Category:Geometric inequalities]]
[[Category:Sumsets]]

Latest revision as of 21:18, 14 December 2014

Friends contact him Royal. Interviewing is what I do for a residing but I strategy on altering it. Playing crochet is a factor that I'm completely addicted to. Her family life in Delaware but she requirements to move simply because of her family.

my website car warranty; mouse click the up coming web site,