Trailing zero: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Tradernet
en>Cydebot
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
The [[dihedral angle]]s for the [[edge-transitive]] polyhedra are:
Hi there. Let me begin by introducing the writer, her title is Sophia Boon but she never really favored that title. Credit authorising is how he tends to make cash. Her family life in Ohio but her husband desires them to move. She is truly fond of caving but she doesn't have the time recently.<br><br>Feel free to surf to my website ... clairvoyants ([http://koreanyelp.com/index.php?document_srl=1798&mid=SchoolNews learn more])
{| class="wikitable"
|- align="center"
! Picture
! Name
! [[Schläfli symbol|Schläfli<BR>symbol]]
! [[Vertex configuration|Vertex/Face<BR>configuration]]
! exact dihedral angle<BR>(radians)
! approximate<BR>dihedral angle<BR>(degrees)
|-align="center"
! colspan=6 | [[Platonic solid]]s (regular convex)
|- align="center"
| [[Image:Tetrahedron.png|30px]]
| align="left" | [[Tetrahedron]]
| {3,3}
| (3.3.3)
| arccos(1/3)
| 70.53°
|- align="center"
| [[Image:Hexahedron.png|30px]]
| align="left" | [[Hexahedron]] or [[Cube (geometry)|Cube]]
| {4,3}
| (4.4.4)
| π/2
| 90°
|- align="center"
| [[Image:Octahedron.png|30px]]
| align="left" | [[Octahedron]]
| {3,4}
| (3.3.3.3)
| π &minus; arccos(1/3)
| 109.47°
|- align="center"
| [[Image:Dodecahedron.png|30px]]
| align="left" | [[Dodecahedron]]
| {5,3}
| (5.5.5)
| π &minus; arctan(2)
| 116.56°
|- align="center"
| [[Image:Icosahedron.png|30px]]
| align="left" | [[Icosahedron]]
| {3,5}
| (3.3.3.3.3)
| π &minus; arccos(&radic;5/3)
| 138.19°
|-align="center"
! colspan=6 | [[Kepler-Poinsot solid]]s (regular nonconvex)
|- align="center"
| [[Image:Small stellated dodecahedron.png|30px]]
| align="left" |[[Small stellated dodecahedron]]||{5/2,5}
| (5/2.5/2.5/2.5/2.5/2)
| π &minus; arctan(2)
| 116.56°
|-  align="center"
| [[Image:Great dodecahedron.png|30px]]
| align="left" |[[Great dodecahedron]]||{5,5/2}
| (5.5.5.5.5)/2
| arctan(2)
| 63.435°
|-  align="center"
| [[Image:Great stellated dodecahedron.png|30px]]
| align="left" |[[Great stellated dodecahedron]]||{5/2,3}
| (5/2.5/2.5/2)
| arctan(2)
| 63.435°
|-  align="center"
| [[Image:Great icosahedron.png|30px]]
| align="left" |[[Great icosahedron]]||{3,5/2}
| (3.3.3.3.3)/2
| arcsin(2/3)
| 41.810°
|- align="center"
! colspan=6 | [[Quasiregular polyhedron|Quasiregular polyhedra]] ([[Rectification (geometry)|Rectified regular]])
|- align="center"
| [[Image:Uniform polyhedron-33-t1.png|30px]]
| align="left" | [[Tetratetrahedron]]
| r{3,3}
| (3.3.3.3)
| <math> \pi - \arccos{\left( \frac{1}{3} \right)} </math>
| 109.47°
|- align="center"
| [[Image:Cuboctahedron.png|30px]]
| align="left" | [[Cuboctahedron]]
| r{3,4}
| (3.4.3.4)
| <math> \pi - \arccos{\left( \frac{1}{\sqrt{3}} \right)} </math>
| 125.264°
|- align="center"
| [[Image:Icosidodecahedron.png|30px]]
| align="left" | [[Icosidodecahedron]]
| r{3,5}
| (3.5.3.5)
| <math> \pi - \arccos{ \left( \sqrt{ \frac{ (5 + 2\sqrt 5)}{15} } \right) } </math>
| 142.623°
|- align="center"
| [[Image:Dodecadodecahedron.png|30px]]
| align="left" | [[Dodecadodecahedron]]
| r{5/2,5}
| (5.5/2.5.5/2)
| π  arctan(2)
| 116.56°
|- align="center"
| [[Image:Great icosidodecahedron.png|30px]]
| align="left" | [[Great icosidodecahedron]]
| r{5/2,3}
| (3.5/2.3.5/2)
|
|
|- align="center"
! colspan=6 | Ditrigonal polyhedra
|- align="center"
| [[Image:Small ditrigonal icosidodecahedron.png|30px]]
| align="left" | [[Small ditrigonal icosidodecahedron]]
| a{5,3}
| (3.5/2.3.5/2.3.5/2)
|
|
|- align="center"
| [[Image:Ditrigonal dodecadodecahedron.png|30px]]
| align="left" | [[Ditrigonal dodecadodecahedron]]
| b{5,5/2}
| (5.5/3.5.5/3.5.5/3)
|
|
|- align="center"
| [[Image:Great ditrigonal icosidodecahedron.png|30px]]
| align="left" | [[Great ditrigonal icosidodecahedron]]
| c{3,5/2}
| (3.5.3.5.3.5)/2
|
|
|- align="center"
! colspan=6 | [[Hemipolyhedron|Hemipolyhedra]]
|- align="center"
| [[Image:Tetrahemihexahedron.png|30px]]
| align="left" | [[Tetrahemihexahedron]]
| o{3,3}
| (3.4.3/2.4)
|
| 54.73°
|- align="center"
| [[Image:Cubohemioctahedron.png|30px]]
| align="left" | [[Cubohemioctahedron]]
| o{3,4}
| (4.6.4/3.6)
|
| 54.73°
|- align="center"
| [[Image:Octahemioctahedron.png|30px]]
| align="left" | [[Octahemioctahedron]]
| o{4,3}
| (3.6.3/2.6)
|
| 70.53°
|- align="center"
| [[Image:Small dodecahemidodecahedron.png|30px]]
| align="left" | [[Small dodecahemidodecahedron]]
| o{3,5}
| (5.10.5/4.10)
|
| 26.063°
|- align="center"
| [[Image:Small icosihemidodecahedron.png|30px]]
| align="left" | [[Small icosihemidodecahedron]]
| o{5,3}
| (3.10.3/2.10)
|
| 116.56°
|- align="center"
| [[Image:Great dodecahemicosahedron.png|30px]]
| align="left" | [[Great dodecahemicosahedron]]
| o{5/2,5}
| (5.6.5/4.6)
|
|
|- align="center"
| [[Image:Small dodecahemicosahedron.png|30px]]
| align="left" | [[Small dodecahemicosahedron]]
| o{5,5/2}
| (5/2.6.5/3.6)
|
|
|- align="center"
| [[Image:Great icosihemidodecahedron.png|30px]]
| align="left" | [[Great icosihemidodecahedron]]
| o{5/2,3}
| (3.10/3.3/2.10/3)
|
|
|- align="center"
| [[Image:Great dodecahemidodecahedron.png|30px]]
| align="left" | [[Great dodecahemidodecahedron]]
| o{3,5/2}
| (5/2.10/3.5/3.10/3)
|
|
|- align="center"
! colspan=6 | [[Polyhedron#Quasi-regular duals|Quasiregular dual solids]]
|- align="center"
| [[Image:Hexahedron.png|30px]]
| align="left" | [[Cube|Rhombic hexahedron]]<BR>(Dual of tetratetrahedron)
| -
| V(3.3.3.3)
| π &minus; π/2
| 90°
|- align="center"
| [[Image:Rhombic dodecahedron.png|30px]]
| align="left" | [[Rhombic dodecahedron]]<BR>(Dual of cuboctahedron)
| -
| V(3.4.3.4)
| π &minus; π/3
| 120°
|- align="center"
| [[Image:Rhombic triacontahedron.png|30px]]
| align="left" | [[Rhombic triacontahedron]]<BR>(Dual of icosidodecahedron)
| -
| V(3.5.3.5)
| π &minus; π/5
| 144°
|- align="center"
| [[Image:DU36 medial rhombic triacontahedron.png|30px]]
| align="left" | [[Medial rhombic triacontahedron]]<BR>(Dual of dodecadodecahedron)
| -
| V(5.5/2.5.5/2)
| π  π/3
| 120°
|- align="center"
| [[Image:DU54 great rhombic triacontahedron.png|30px]]
| align="left" | [[Great rhombic triacontahedron]]<BR>(Dual of great icosidodecahedron)
| -
| V(3.5/2.3.5/2)
| π  π/(5/2)
| 72°
|- align="center"
! colspan=6 | Duals of the ditrigonal polyhedra
|- align="center"
| [[Image:DU30 small triambic icosahedron.png|30px]]
| align="left" | [[Small triambic icosahedron]]<BR>(Dual of small ditrigonal icosidodecahedron)
| -
| V(3.5/2.3.5/2.3.5/2)
|
|
|- align="center"
| [[Image:DU41 medial triambic icosahedron.png|30px]]
| align="left" | [[Medial triambic icosahedron]]<BR>(Dual of ditrigonal dodecadodecahedron)
| -
| V(5.5/3.5.5/3.5.5/3)
|
|
|- align="center"
| [[Image:DU47 great triambic icosahedron.png|30px]]
| align="left" | [[Great triambic icosahedron]]<BR>(Dual of great ditrigonal icosidodecahedron)
| -
| V(3.5.3.5.3.5)/2
|
|
|- align="center"
! colspan=6 | [[Hemipolyhedron#Duals of the hemipolyhedra|Duals of the hemipolyhedra]]
|- align="center"
| [[Image:Tetrahemihexacron.png|30px]]
| align="left" | [[Tetrahemihexacron]]<BR>(Dual of tetrahemihexahedron)
| -
| V(3.4.3/2.4)
| π  π/2
| 90°
|- align="center"
| [[Image:Hexahemioctacron.png|30px]]
| align="left" | [[Hexahemioctacron]]<BR>(Dual of cubohemioctahedron)
| -
| V(4.6.4/3.6)
| π  π/3
| 120°
|- align="center"
| [[Image:Hexahemioctacron.png|30px]]
| align="left" | [[Octahemioctacron]]<BR>(Dual of octahemioctahedron)
| -
| V(3.6.3/2.6)
| π  π/3
| 120°
|- align="center"
| [[Image:Small dodecahemidodecacron.png|30px]]
| align="left" | [[Small dodecahemidodecacron]]<BR>(Dual of small dodecahemidodecacron)
| -
| V(5.10.5/4.10)
| π  π/5
| 144°
|- align="center"
| [[Image:Small dodecahemidodecacron.png|30px]]
| align="left" | [[Small icosihemidodecacron]]<BR>(Dual of small icosihemidodecacron)
| -
| V(3.10.3/2.10)
| π  π/5
| 144°
|- align="center"
| [[Image:Small dodecahemicosacron.png|30px]]
| align="left" | [[Great dodecahemicosacron]]<BR>(Dual of great dodecahemicosahedron)
| -
| V(5.6.5/4.6)
| π  π/3
| 120°
|- align="center"
| [[Image:Small dodecahemicosacron.png|30px]]
| align="left" | [[Small dodecahemicosacron]]<BR>(Dual of small dodecahemicosahedron)
| -
| V(5/2.6.5/3.6)
| π  π/3
| 120°
|- align="center"
| [[Image:Great dodecahemidodecacron.png|30px]]
| align="left" | [[Great icosihemidodecacron]]<BR>(Dual of great icosihemidodecacron)
| -
| V(3.10/3.3/2.10/3)
| π  π/(5/2)
| 72°
|- align="center"
| [[Image:Great dodecahemidodecacron.png|30px]]
| align="left" | [[Great dodecahemidodecacron]]<BR>(Dual of great dodecahemidodecacron)
| -
| V(5/2.10/3.5/3.10/3)
| π  π/(5/2)
| 72°
|}
 
== References ==
* [[Coxeter]], ''Regular Polytopes'' (1963), Macmillian Company
** ''Regular Polytopes'', (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 (Table I: Regular Polytopes, (i) The nine regular polyhedra {p,q} in ordinary space)
* {{The Geometrical Foundation of Natural Structure (book)}} (Section 3-7 to 3-9)
* {{MathWorld |title=Uniform Polyhedron |id=UniformPolyhedron}}
 
[[Category:Polyhedra]]

Latest revision as of 22:59, 28 November 2014

Hi there. Let me begin by introducing the writer, her title is Sophia Boon but she never really favored that title. Credit authorising is how he tends to make cash. Her family life in Ohio but her husband desires them to move. She is truly fond of caving but she doesn't have the time recently.

Feel free to surf to my website ... clairvoyants (learn more)