Biholomorphism: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Addbot
m Bot: Migrating 3 interwiki links, now provided by Wikidata on d:q377166
en>Brirush
Sectionifying
 
Line 1: Line 1:
In [[mathematics]], a '''jacket matrix''' is a [[square matrix]]  <math>A= (a_{ij})</math> of order  ''n''  if its entries are non-zero and [[real number|real]], [[complex number|complex]], or from a [[finite field]], and [[File:Had_otr_jac.png|thumb|Hierarchy of matrix types]]
Greetings! I am Myrtle Shroyer. North Dakota is exactly where me and my husband live. Hiring is her day job now and she will not change it whenever soon. He is really fond of doing ceramics but he is having difficulties to discover time for it.<br><br>my web page: [http://www.gaysphere.net/blog/167593 http://www.gaysphere.net]
 
:<math>\  AB=BA=I_n </math>
 
where ''I''<sub>''n''</sub> is the [[identity matrix]], and  
:<math>\ B ={1 \over n}(a_{ij}^{-1})^T.</math>
 
where ''T'' denotes the [[transpose]] of the matrix.
 
In other words, the inverse of a jacket matrix is determined its element-wise or block-wise inverse.  The definition above may also be expressed as:
 
:<math>\forall u,v \in \{1,2,\dots,n\}:~a_{iu},a_{iv} \neq 0, ~~~~ \sum_{i=1}^n a_{iu}^{-1}\,a_{iv} =
  \begin{cases}
      n, & u = v\\
      0, & u \neq v
     
  \end{cases}
</math>
 
The jacket matrix is a generalization of the [[Hadamard matrix]],also it is a [[Diagonal]] block-wise inverse matrix.
 
== Example 1. ==
 
:<math>
A = \left[  \begin{array}{rrrr}  1 & 1 & 1 & 1 \\  1 & -2 & 2 & -1 \\  1 & 2 & -2 & -1 \\  1 & -1 & -1 & 1 \\  \end{array} \right],</math>:<math>B ={1 \over 4} \left[
  \begin{array}{rrrr}  1 & 1 & 1 & 1 \\[6pt]  1 & -{1 \over 2} & {1 \over 2} & -1 \\[6pt]
  1 & {1 \over 2} & -{1 \over 2} & -1 \\[6pt]    1 & -1 & -1 & 1\\[6pt]  \end{array}
\right].</math>
 
or more general
:<math>
A = \left[  \begin{array}{rrrr}  a & b & b & a \\  b & -c & c & -b \\  b & c & -c & -b \\
  a & -b & -b & a  \end{array} \right], </math>:<math> B = {1 \over 4} \left[  \begin{array}{rrrr}  {1 \over a} & {1 \over b} & {1 \over b} & {1 \over a} \\[6pt]  {1 \over b} & -{1 \over c} & {1 \over c} & -{1 \over b} \\[6pt]  {1 \over b} & {1 \over c} & -{1 \over c} & -{1 \over b} \\[6pt]  {1 \over a} & -{1 \over b} & -{1 \over b} & {1 \over a}  \end{array} \right],</math>
== Example 2.==
:<math> \mathbf{J}= \left[  \begin{array}{rrrr}  I & 0 & 0 & 0 \\  0  &  c  &  s &  0 \\ 0 &  -s &  c  &  0 \\  0 & 0 & 0 & I \\  \end{array} \right],</math> :<math> \mathbf{J}\mathbf{J}^{\mathrm{T}} = \mathbf{J}^{\mathrm{T}}\mathbf{J} =\mathbf{I}</math>
 
== References ==
* Moon Ho Lee,The Center Weighted Hadamard Transform, ''IEEE Transactions on Circuits'' Syst. Vol. 36, No. 9, PP. 1247–1249, Sept.1989.
* K.J. Horadam, Hadamard Matrices and Their Applications, Princeton University Press, UK, Chapter 4.5.1: The jacket matrix construction, PP. 85–91, 2007.
* Moon Ho Lee, Jacket Matrices: Constructions and Its Applications for Fast Cooperative Wireless Signal Processing,LAP LAMBERT Publishing, Germany,Nov. 2012.
 
==External links==
* [http://mdmc.chonbuk.ac.kr/english/download/report%201.pdf Technical report: Linear-fractional Function, Elliptic Curves, and Parameterized Jacket Matrices]
* [http://mdmc.chonbuk.ac.kr/english/images/Jacket%20matrix%20and%20its%20fast%20algorithm%20for%20wireless%20signal%20processing.pdf Jacket Matrix and Its Fast Algorithms for Cooperative Wireless Signal Processing]
* [https://www.morebooks.de/store/gb/book/jacket-matrices/isbn/978-3-659-29145-6: Jacket Matrices: Constructions and Its Applications for Fast Cooperative Wireless Signal Processing]
[[Category:Matrices]]

Latest revision as of 15:28, 22 November 2014

Greetings! I am Myrtle Shroyer. North Dakota is exactly where me and my husband live. Hiring is her day job now and she will not change it whenever soon. He is really fond of doing ceramics but he is having difficulties to discover time for it.

my web page: http://www.gaysphere.net