Hidden subgroup problem: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>LokiClock
Intro: more applications listed
Algorithms: link creation
 
Line 1: Line 1:
{| class="wikitable" align="right" style="margin-left:10px" width="320"
She is recognized by the name of Myrtle Shryock. He utilized to be unemployed but now he is a meter reader. It's not a common factor but what she likes performing is base jumping and now she is trying to earn cash with it. Her spouse and her live in Puerto Rico but she will have to transfer one day or an additional.<br><br>Also visit my web site home std test ([http://chatbook.biz/blogs/post/922 This Webpage])
!bgcolor=#e7dcc3 colspan=2|Cubic honeycomb
|-
|bgcolor=#ffffff align=center colspan=2|[[Image:Cubic honeycomb.png|155px]][[Image:Partial cubic honeycomb.png|155px]]
|-
|bgcolor=#e7dcc3|Type||[[List_of_regular_polytopes#Tessellations_of_Euclidean_3-space|Regular honeycomb]]
|-
|bgcolor=#e7dcc3|Family||[[Hypercube honeycomb]]
|-
|bgcolor=#e7dcc3|Indexing<ref>For cross-referencing, they are given with list indices from Andreini (1-22), Williams(1-2,9-19), Johnson (11-19, 21-25, 31-34, 41-49, 51-52, 61-65), and Grünbaum(1-28).</ref>
|J<sub>11,15</sub>, A<sub>1</sub><BR>W<sub>1</sub>, G<sub>22</sub>
|-
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| {4,3,4}
|-
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]||{{CDD|node_1|4|node|3|node|4|node}}
|-
|bgcolor=#e7dcc3|Cell type||[[cube|{4,3}]]
|-
|bgcolor=#e7dcc3|Face type||[[square (geometry)|{4}]]
|-
|bgcolor=#e7dcc3|Vertex figure||[[Image:Cubic honeycomb verf.png|80px]]<BR>([[octahedron]])
|-
|bgcolor=#e7dcc3|[[Space group]]<BR>[[Fibrifold notation]]||Pm{{overline|3}}m (221)<BR>4<sup>−</sup>:2
|-
|bgcolor=#e7dcc3|[[Coxeter group]]||<math>{\tilde{C}}_3</math>, [4,3,4]
|-
|bgcolor=#e7dcc3|Dual||[[Self-dual polytope|self-dual]]
|-
|bgcolor=#e7dcc3|Properties||[[vertex-transitive]], [[Quasiregular honeycomb]]
|}
The '''cubic honeycomb''' is the only regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]) in Euclidean 3-space, made up of [[cube|cubic]] cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its [[vertex figure]] is a regular [[octahedron]].
 
[[John Horton Conway]] calls this self-dual honeycomb a '''cubille'''.
 
It is a [[Self-dual tessellation|self-dual]] tessellation with [[Schläfli symbol]] {4,3,4}.
 
==Cartesian coordinates==
[[File:Kubisches_Kristallsystem.jpg|100px|left|thumb|[[Simple cubic]]]]
The [[Cartesian coordinates]] of the vertices are:
::(i, j, k)
:for all integral values: i,j,k, with edges parallel to the axes and with an edge length of 1.
 
== Related honeycombs==
It is part of a multidimensional family of [[hypercube honeycomb]]s, with [[Schläfli symbol]]s of the form {4,3,...,3,4}, starting with the [[square tiling]], {4,4} in the plane.
 
It is one of 28 [[Convex uniform honeycomb|uniform honeycombs]] using [[uniform polyhedron|convex uniform polyhedral]] cells.
 
== Isometries of simple cubic lattices==
Simple cubic lattices can be distorted into lower symmetries, represented by lower crystal systems:
{| class=wikitable
![[Crystal system]]
![[Monoclinic_crystal_system|Monoclinic]]<BR>[[Triclinic_crystal_system|Triclinic]]
![[Orthorhombic_crystal_system|Orthorhombic]]
![[Tetragonal_crystal_system|Tetragonal]]
![[rhombohedral lattice system|Rhombohedral]]
![[Cubic crystal system|Cubic]]
|- align=center
![[Unit cell]]
|[[Parallelopiped]]
|colspan=2|[[Rectangular cuboid|Cuboid]]
|Trigonal<BR>[[trapezohedron]]
|[[Cube]]
|- valign=top align=center
![[Point group]]<BR>Order<BR>Rotation subgroup
|[ ], (*)<BR>Order 2<BR>[ ]<sup>+</sup>, (1)
|[2,2], (*222)<BR>Order 8<BR>[2,2]<sup>+</sup>, (222)
|[4,2], (*422)<BR>Order 16<BR>[4,2]<sup>+</sup>, (422)
|[3], (*33)<BR>Order 6<BR>[3]<sup>+</sup>, (33)
|[4,3], (*432)<BR>Order 48<BR>[4,3]<sup>+</sup>, (432)
|- align=center
!Diagram
|[[File:Monoclinic.svg|80px]]
|[[File:Orthorhombic.svg|80px]]
|[[File:Tetragonal.svg|60px]]
|[[File:Hexagonal latticeR.svg|100px]]
|[[File:Lattic_simple_cubic.svg|100px]]
|- align=center
![[Space group]]<BR>Rotation subgroup
|Pm (6)<BR>P1 (1)
|Pmmm (47)<BR>P222 (16)
|P4/mmm (123)<BR>P422 (89)
|R3m (160)<BR>R3 (146)
|Pm{{overline|3}}m (221)<BR>P432 (207)
|- align=center
![[Coxeter notation]]
| -
| [&infin;]<sub>a</sub>×[&infin;]<sub>b</sub>×[&infin;]<sub>c</sub>
| [4,4]<sub>a</sub>×[&infin;]<sub>c</sub>
| -
| [4,3,4]<sub>a</sub>
|- align=center
![[Coxeter diagram]]
| -
| {{CDD|node_1|infin|node|2|node_1|infin|node|2|node_1|infin|node}}
| {{CDD|node_1|4|node|4|node|2|node_1|infin|node}}
| -
| {{CDD|node_1|4|node|3|node|4|node}}
|}
 
== Uniform colorings ==
 
There is a large number of [[uniform coloring]]s, derived from different symmetries. These include:
{| class="wikitable"
![[Coxeter notation]]<BR>[[Space group]]
![[Coxeter diagram]]
![[Schläfli symbol]]
!Partial<BR>honeycomb
!Colors by letters
|-
![4,3,4]<BR>Pm{{overline|3}}m (221)
|{{CDD|node_1|4|node|3|node|4|node}}
|{4,3,4}
| [[Image:Partial cubic honeycomb.png|50px]]
| 1: aaaa/aaaa
|-
![4,3<sup>1,1</sup>]<BR>Fm{{overline|3}}m (225)
|{{CDD|node_1|4|node|split1|nodes}}
|{4,3<sup>1,1</sup>}
| [[Image:Bicolor cubic honeycomb.png|50px]]
| 2: abba/baab
|-
![4,3,4]<BR>Pm{{overline|3}}m (221)
|{{CDD|node_1|4|node|3|node|4|node_1}}
|t<sub>0,3</sub>{4,3,4}
| [[Image:Runcinated cubic honeycomb.png|50px]]
| 4: abbc/bccd
|-
!<nowiki>[[</nowiki>4,3,4]]<BR>Pm{{overline|3}}m (229)
|{{CDD|node_1|4|node|3|node|4|node_1}}
|t<sub>0,3</sub>{4,3,4}
|
| 4: abbb/bbba
|-
![4,3,4,2,&infin;]
|{{CDD|node_1|4|node|4|node|2|node_1|infin|node_1}}
|{4,4}×t{&infin;}
| [[Image:Square prismatic honeycomb.png|50px]]
| 2: aaaa/bbbb
|-
![4,3,4,2,&infin;]
|{{CDD|node|4|node_1|4|node|2|node_1|infin|node}}
|t<sub>1</sub>{4,4}×{&infin;}
| [[Image:Square prismatic 2-color honeycomb.png|50px]]
| 2: abba/abba
|-
![&infin;,2,&infin;,2,&infin;]
|{{CDD|node_1|infin|node_1|2|node_1|infin|node_1|2|node_1|infin|node}}
|t{&infin;}×t{&infin;}×{&infin;}
| [[Image:Square 4-color prismatic honeycomb.png|50px]]
| 4: abcd/abcd
|-
![&infin;,2,&infin;,2,&infin;]
|{{CDD|node_1|infin|node_1|2|node_1|infin|node_1|2|node_1|infin|node_1}}
|t{&infin;}×t{&infin;}×t{&infin;}
| [[Image:Cubic 8-color honeycomb.png|50px]]
| 8: abcd/efgh
|}
 
== Related 3-space tesellations ==
The [4,3,4], {{CDD|node|4|node|3|node|4|node}}, [[Coxeter group]] generates 15 permutations of uniform tessellations, 9 with distinct geometry including the alternated cubic honeycomb. The [[Expansion (geometry)|expanded]] cubic honeycomb (also known as the runcinated tesseractic honeycomb) is geometrically identical to the cubic honeycomb.
{{C3 honeycombs}}
 
The [4,3<sup>1,1</sup>], {{CDD|node|4|node|split1|nodes}}, [[Coxeter group]] generates 9 permutations of uniform tessellations, 4 with distinct geometry including the alternated cubic honeycomb.
{{B3 honeycombs}}
 
=== Related polytopes and honeycombs===
It is related to the regular [[4-polytope]] [[tesseract]], [[Schläfli symbol]] {4,3,3}, which exists in 4-space, and only has ''3'' cubes around each edge. It's also related to the [[order-5 cubic honeycomb]], Schläfli symbol {4,3,5}, of [[hyperbolic space]] with 5 cubes around each edge.
 
It is in a sequence of polychora and honeycomb with [[octahedron|octahedral]] [[vertex figure]]s.
{{Octahedral_vertex_figure_tessellations}}
 
It in a sequence of [[regular polychora]] and honeycombs with [[cube|cubic]] [[cell (geometry)|cells]].
{{Cubic cell tessellations}}
 
==See also ==
{{Commonscat|Cubic honeycomb}}
*[[Architectonic and catoptric tessellation]]
*[[Alternated cubic honeycomb]]
*[[List of regular polytopes]]
* [[Order-5 cubic honeycomb]] A hyperbolic cubic honeycomb with 5 cubes per edge
 
== References ==
{{reflist}}
* [[John Horton Conway|John H. Conway]], Heidi Burgiel, Chaim Goodman-Strauss, (2008) ''The Symmetries of Things'', ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, Architectonic and Catoptric tessellations, p 292-298, includes all the nonprismatic forms)
* [[Coxeter|Coxeter, H.S.M.]] ''[[Regular Polytopes (book)|Regular Polytopes]]'', (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 p.&nbsp;296, Table II: Regular honeycombs
* [[George Olshevsky]], ''Uniform Panoploid Tetracombs'', Manuscript (2006) ''(Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)''
* [[Branko Grünbaum]], Uniform tilings of 3-space. [[Geombinatorics]] 4(1994), 49 - 56.
* '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
* [[Alfredo Andreini|A. Andreini]], ''Sulle reti di poliedri regolari e semiregolari e sulle corrispondenti reti correlative'' (On the regular and semiregular nets of polyhedra and on the corresponding correlative nets), Mem. Società Italiana della Scienze, Ser.3, 14 (1905) 75–129.
* {{KlitzingPolytopes|flat.htm|3D Euclidean Honeycombs|x4o3o4o - chon - O1}}
* [http://www.doskey.com/polyhedra/UniformHoneycombs.html Uniform Honeycombs in 3-Space: 01-Chon]
{{Honeycombs}}
 
[[Category:Honeycombs (geometry)]]
[[Category:Polychora]]

Latest revision as of 17:27, 13 August 2014

She is recognized by the name of Myrtle Shryock. He utilized to be unemployed but now he is a meter reader. It's not a common factor but what she likes performing is base jumping and now she is trying to earn cash with it. Her spouse and her live in Puerto Rico but she will have to transfer one day or an additional.

Also visit my web site home std test (This Webpage)