Quote notation: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>AnomieBOT
m Dating maintenance tags: {{What}}
en>Thebhgg
 
Line 1: Line 1:
{{See also|Vector algebra relations}}
Marvella is what you can contact her but it's not the most female name out there. For years I've been operating as a payroll clerk. Doing ceramics is what adore performing. South Dakota is her birth location but she needs to move simply because of her family.<br><br>My web blog ... [http://www.neweracinema.com/tube/blog/181510 home std test]
The following [[Identity (mathematics)|identities]] are important in [[vector calculus]]:
 
==Operator notations==
===Gradient===
{{main|Gradient}}
 
Gradient of an [[tensor field]], <math>\mathbf{\mathfrak{T}}</math>, of order ''n'', is generally written as
 
:<math>\operatorname{grad}(\mathbf{\mathfrak{T}}) = \nabla \mathbf{\mathfrak{T}} </math>
 
and is a tensor field of order {{nowrap|''n'' + 1}}. In particular, if the tensor field has order 0 (i.e. a scalar), <math>\psi</math>, the resulting gradient,
 
:<math>\operatorname{grad}(\psi) = \nabla \psi</math>
 
is a [[vector field]].
 
===Divergence===
{{main|Divergence}}
 
The divergence of a [[tensor field]], <math>\mathbf{\mathfrak{T}}</math>, of non-zero order ''n'', is generally written as
 
:<math>\operatorname{div}(\mathbf{\mathfrak{T}}) = \nabla \cdot \mathbf{\mathfrak{T}}</math>
 
and is a [[Tensor contraction|contraction]] to a tensor field of order {{nowrap|''n'' − 1}}. Specifically, the divergence of a vector is a scalar. The divergence of a higher order tensor field may be found by decomposing the tensor field into a sum of outer products, thereby allowing the use of the identity,
 
:<math>\nabla \cdot (\mathbf{a} \otimes \hat{\mathbf{\mathfrak{T}}}) = \hat{\mathbf{\mathfrak{T}}}(\nabla \cdot \mathbf{a})+(\mathbf{a}\cdot \nabla) \hat{\mathbf{\mathfrak{T}}}</math>
 
where <math> \mathbf{a}\cdot\nabla </math> is the [[directional derivative]] in the direction of <math> \mathbf{a} </math> multiplied by its magnitude. Specifically, for the outer product of two vectors,
 
:<math>\nabla \cdot (\mathbf{a} \mathbf{b}^\mathrm{T}) = \mathbf{b}(\nabla \cdot \mathbf{a})+(\mathbf{a}\cdot \nabla) \mathbf{b} \ .</math>
 
===Curl===
{{main|Curl (mathematics)}}
For a 3-dimensional vector field <math> \mathbf{v} </math>, curl is generally written as:
 
:<math>\operatorname{curl}(\mathbf{v}) = \nabla \times \mathbf{v}</math>
 
and is also a 3-dimensional vector field.
 
===Laplacian===
{{main|Laplace operator}}
For a [[tensor field]], <math> \mathbf{\mathfrak{T}} </math>, the laplacian is generally written as:
 
:<math>\Delta\mathbf{\mathfrak{T}} = \nabla^2 \mathbf{\mathfrak{T}} = (\nabla \cdot \nabla) \mathbf{\mathfrak{T}}</math>
 
and is a tensor field of the same order.
 
===Special notations===
In ''Feynman subscript notation'',
: <math> \nabla_\mathbf{B} \left( \mathbf{A \cdot B} \right) = \mathbf{A} \times \left( \nabla \times \mathbf{B} \right) + \left( \mathbf{A} \cdot \nabla \right) \mathbf{B} </math>
 
where the notation ∇<sub>'''B'''</sub>  means the subscripted gradient operates on only the factor '''B'''.<ref name=Feynman>{{cite book |first1=R. P. |last1=Feynman |first2=R. B. |last2=Leighton |first3=M. |last3=Sands |title=The Feynman Lecture on Physics |publisher = Addison-Wesley |year=1964 |isbn=0-8053-9049-9 |nopp= true |pages= Vol II, p. 27–4}}</ref><ref name=Missevitch>{{cite arXiv |eprint=physics/0504223 |first1=A. L. |last1=Kholmetskii |first2=O. V. |last2=Missevitch |title=The Faraday induction law in relativity theory |year=2005 |page=4 |class=physics.class-ph }}</ref>
 
A less general but similar idea is used in ''[[geometric algebra]]'' where the so-called Hestenes ''overdot notation'' is employed.<ref name=Doran>{{cite book |first1=C. |last1=Doran |first2=A. |last2=Lasenby |title=Geometric algebra for physicists |year=2003 |publisher=Cambridge University Press |page=169 |isbn=978-0-521-71595-9}}</ref> The above identity is then expressed as:
 
: <math> \dot{\nabla} \left( \mathbf{A} \cdot \dot{\mathbf{B}} \right) = \mathbf{A} \times \left( \nabla \times \mathbf{B} \right) + \left( \mathbf{A} \cdot \nabla \right) \mathbf{B} </math>
 
where overdots define the scope of the vector derivative. The dotted vector, in this case '''B''', is differentiated, while the (undotted) '''A''' is held constant.
 
For the remainder of this article, Feynman subscript notation will be used where appropriate.
 
==Properties==
===Distributive properties===
 
:<math> \nabla ( \psi + \phi ) = \nabla \psi + \nabla \phi </math>
 
:<math> \nabla \cdot ( \mathbf{A} + \mathbf{B} ) = \nabla \cdot \mathbf{A} + \nabla \cdot \mathbf{B} </math>
 
:<math> \nabla \times ( \mathbf{A} + \mathbf{B} ) = \nabla \times \mathbf{A} + \nabla \times \mathbf{B} </math>
 
===Product rule for the gradient===
The gradient of the product of two scalar fields  <math>\psi</math> and <math>\phi</math> follows the same form as the [[product rule]] in single variable [[calculus]].
: <math> \nabla (\psi \, \phi) = \phi \,\nabla \psi  + \psi \,\nabla \phi </math>
 
===Product of a scalar and a vector===
:<math> \nabla \cdot (\psi\mathbf{A}) = \mathbf{A} \cdot\nabla\psi + \psi\nabla \cdot \mathbf{A} </math>
 
:<math> \nabla \times (\psi\mathbf{A}) = \psi\nabla \times \mathbf{A} + \nabla\psi \times \mathbf{A} </math>
 
===Vector dot product===
 
:<math> \nabla(\mathbf{A} \cdot \mathbf{B}) = (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A} + \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) \ . </math>
 
Alternatively, using Feynman subscript notation,
 
:<math> \nabla(\mathbf{A} \cdot \mathbf{B})=  \nabla_\mathbf{A}(\mathbf{A}  \cdot \mathbf{B}) +  \nabla_\mathbf{B} (\mathbf{A} \cdot \mathbf{B}) \ . </math>
 
As a special case, when '''A''' = '''B''',
:<math> \frac{1}{2} \nabla \left( \mathbf{A}\cdot\mathbf{A} \right) = \mathbf{A} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla) \mathbf{A} \ . </math>
 
===Vector cross product===
 
:<math> \nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B}) \ . </math>
 
:<math> \begin{align}\nabla \times (\mathbf{A} \times \mathbf{B}) &= \mathbf{A} (\nabla \cdot \mathbf{B}) - \mathbf{B} (\nabla \cdot \mathbf{A}) + (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B} \\
&= (\nabla \cdot \mathbf{B}  + \mathbf{B} \cdot \nabla)\mathbf{A} -(\nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla )\mathbf{B} \\
&= \nabla \cdot (\mathbf{B} \mathbf{A}^\mathrm{T}) - \nabla \cdot (\mathbf{A} \mathbf{B}^\mathrm{T}) \\
&= \nabla \cdot (\mathbf{B} \mathbf{A}^\mathrm{T} - \mathbf{A} \mathbf{B}^\mathrm{T} ) \ .
\end{align}
</math>
 
==Second derivatives==
===Curl of the gradient===
 
The [[Curl (mathematics)|curl]] of the [[gradient]] of ''any'' [[scalar field]] <math>\ \phi </math> is always the [[zero vector]]:
 
:<math>\nabla \times ( \nabla \phi )  = \mathbf{0}</math>
 
===Divergence of the curl===
The [[divergence]] of the curl of ''any'' [[vector field]] '''A''' is always zero:
:<math>\nabla \cdot ( \nabla \times \mathbf{A} ) = 0 </math>
 
===Divergence of the gradient===
The [[Laplacian]] of a scalar field is defined as the divergence of the gradient:
:<math> \nabla^2 \psi = \nabla \cdot (\nabla \psi) </math>
Note that the result is a scalar quantity.
 
===Curl of the curl===
:<math> \nabla \times \left( \nabla \times \mathbf{A} \right) = \nabla(\nabla \cdot \mathbf{A}) - \nabla^{2}\mathbf{A}</math>
Here,∇<sup>2</sup> is the [[vector Laplacian]] operating on the vector field '''A'''.
 
==Summary of important identities==
===Addition and multiplication===
*<math> \mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A} </math>
*<math> \mathbf{A}\cdot\mathbf{B}=\mathbf{B}\cdot\mathbf{A} </math>
*<math> \mathbf{A}\times\mathbf{B}=\mathbf{-B}\times\mathbf{A} </math>
*<math> \left(\mathbf{A}+\mathbf{B}\right)\cdot\mathbf{C}=\mathbf{A}\cdot\mathbf{C}+\mathbf{B}\cdot\mathbf{C} </math>
*<math> \left(\mathbf{A}+\mathbf{B}\right)\times\mathbf{C}=\mathbf{A}\times\mathbf{C}+\mathbf{B}\times\mathbf{C} </math>
*<math> \mathbf{A}\cdot\left(\mathbf{B}\times\mathbf{C}\right)=\mathbf{B}\cdot\left(\mathbf{C}\times\mathbf{A}\right)=\mathbf{C}\cdot\left(\mathbf{A}\times\mathbf{B}\right)</math> ([[scalar triple product]])
*<math> \mathbf{A}\times\left(\mathbf{B}\times\mathbf{C}\right)=\left(\mathbf{A}\cdot\mathbf{C}\right)\mathbf{B}-\left(\mathbf{A}\cdot\mathbf{B}\right)\mathbf{C} </math> ([[vector triple product]])
*<math> \left(\mathbf{A}\times\mathbf{B}\right)\cdot\left(\mathbf{C}\times\mathbf{D}\right)=\left(\mathbf{A}\cdot\mathbf{C}\right)\left(\mathbf{B}\cdot\mathbf{D}\right)-\left(\mathbf{B}\cdot\mathbf{C}\right)\left(\mathbf{A}\cdot\mathbf{D}\right) </math>
*<math>
\left(\mathbf{A}\cdot\left(\mathbf{B}\times\mathbf{C}\right)\right)\mathbf{D}=\left(\mathbf{A}\cdot\mathbf{D}\right)\left(\mathbf{B}\times\mathbf{C}\right)+\left(\mathbf{B}\cdot\mathbf{D}\right)\left(\mathbf{C}\times\mathbf{A}\right)+\left(\mathbf{C}\cdot\mathbf{D}\right)\left(\mathbf{A}\times\mathbf{B}\right) </math>
*<math>
\left(\mathbf{A}\times\mathbf{B}\right)\times\left(\mathbf{C}\times\mathbf{D}\right)
=\left(\mathbf{A}\cdot\left(\mathbf{B}\times\mathbf{D}\right)\right)\mathbf{C}-\left(\mathbf{A}\cdot\left(\mathbf{B}\times\mathbf{C}\right)\right)\mathbf{D}</math>
 
===Differentiation===
[[File:DCG chart.svg|right|thumb|300px|DCG chart:
 
A simple chart depicting all rules pertaining to second derivatives.
D, C, G, L and CC stand for divergence, curl, gradient, Laplacian and curl of curl, respectively.
 
Arrows indicate existence of second derivatives. Blue circle in the middle represents curl of curl, whereas the other two red circles(dashed) mean that DD and GG do not exist.
]]
====Gradient====
*<math> \nabla(\psi+\phi)=\nabla\psi+\nabla\phi </math>
*<math> \nabla (\psi \, \phi) = \phi \,\nabla \psi  + \psi \,\nabla \phi </math>
*<math> \nabla\left(\mathbf{A}\cdot\mathbf{B}\right)=\left(\mathbf{A}\cdot\nabla\right)\mathbf{B}+\left(\mathbf{B}\cdot\nabla\right)\mathbf{A}+\mathbf{A}\times\left(\nabla\times\mathbf{B}\right)+\mathbf{B}\times\left(\nabla\times\mathbf{A}\right) </math>
 
====Divergence====
*<math> \nabla\cdot(\mathbf{A}+\mathbf{B})=\nabla\cdot\mathbf{A}+\nabla\cdot\mathbf{B} </math>
*<math> \nabla\cdot\left(\psi\mathbf{A}\right)=\psi\nabla\cdot\mathbf{A}+\mathbf{A}\cdot\nabla \psi </math>
*<math> \nabla\cdot\left(\mathbf{A}\times\mathbf{B}\right)=\mathbf{B}\cdot (\nabla\times\mathbf{A})-\mathbf{A}\cdot(\nabla\times\mathbf{B}) </math>
 
====Curl====
*<math> \nabla\times(\mathbf{A}+\mathbf{B})=\nabla\times\mathbf{A}+\nabla\times\mathbf{B} </math>
*<math> \nabla\times\left(\psi\mathbf{A}\right)=\psi\nabla\times\mathbf{A}-\mathbf{A}\times\nabla \psi </math>
*<math> \nabla\times\left(\mathbf{A}\times\mathbf{B}\right)=\mathbf{A}\left(\nabla\cdot\mathbf{B}\right)-\mathbf{B}\left(\nabla\cdot\mathbf{A}\right)+\left(\mathbf{B}\cdot\nabla\right)\mathbf{A}-\left(\mathbf{A}\cdot\nabla\right)\mathbf{B} </math>
====Second derivatives====
*<math> \nabla\cdot(\nabla\times\mathbf{A})=0 </math>
*<math> \nabla\times(\nabla\psi)= \mathbf{0} </math>
*<math> \nabla\cdot(\nabla\psi)=\nabla^{2}\psi </math>        ([[Laplace operator|scalar Laplacian]])
*<math> \nabla\left(\nabla\cdot\mathbf{A}\right)-\nabla\times\left(\nabla\times\mathbf{A}\right)=\nabla^{2}\mathbf{A} </math>  ([[vector Laplacian]])
*<math> \nabla^{2}(\nabla\cdot\mathbf{A})=\nabla\cdot(\nabla^{2}\mathbf{A})
</math> 
*<math> \nabla\cdot(\phi\nabla\psi)=\phi\nabla^{2}\psi + \nabla\phi\cdot\nabla\psi </math>
*<math> \psi\nabla^2\phi-\phi\nabla^2\psi= \nabla\cdot\left(\psi\nabla\phi-\phi\nabla\psi\right)</math>
*<math> \nabla^2(\phi\psi)=\phi\nabla^2\psi+2\nabla\phi\cdot\nabla\psi+\psi\nabla^2\phi</math>
 
===Integration===
Below, the curly symbol ∂ means "[[boundary (topology)|boundary of]]".
 
====Surface–volume integrals====
In the following surface–volume integral theorems, ''V'' denotes a 3d volume with a corresponding 2d [[Boundary (topology)|boundary]] ''S'' = ∂''V'' (a [[closed surface]]):
 
*{{oiint|intsubscpt=<math>\scriptstyle \partial V</math>|integrand=<math>\mathbf{A}\cdot d\mathbf{s}=\iiint_V \left(\nabla \cdot \mathbf{A}\right)dV </math>}} ([[Divergence theorem]])
 
*{{oiint|intsubscpt=<math>\scriptstyle \partial V</math>|integrand=<math>\psi d \mathbf{s} = \iiint_V \nabla \psi\, dV</math>}}
 
*{{oiint|intsubscpt=<math>\scriptstyle \partial V</math>|integrand=<math>\left(\hat{\mathbf{n}}\times\mathbf{A}\right)dS=\iiint _{V}\left(\nabla\times\mathbf{A}\right)dV</math>}}
 
*{{oiint|intsubscpt=<math>\scriptstyle \partial V</math>|integrand=<math>\psi\left(\nabla\varphi\cdot\hat{\mathbf{n}}\right)dS = \iiint _{V}\left(\psi\nabla^{2}\varphi+\nabla\varphi\cdot\nabla\psi\right)dV</math>}} ([[Green's first identity]])
 
*{{oiint|intsubscpt=<math>\scriptstyle \partial V</math>|integrand=<math>\left[\left(\psi\nabla\varphi-\varphi\nabla\psi\right)\cdot\hat{\mathbf{n}}\right]dS=\,\!</math>{{oiint|intsubscpt=<math>\scriptstyle \partial V</math>|integrand=<math>\left[\psi\frac{\partial\varphi}{\partial n}-\varphi\frac{\partial\psi}{\partial n}\right]dS</math>}} <math>=\iiint_{V}\left(\psi\nabla^{2}\varphi-\varphi\nabla^{2}\psi\right)dV\,\!</math>}} ([[Green's second identity]])
 
====Curve–surface integrals====
In the following curve–surface integral theorems, ''S'' denotes a 2d open surface with a corresponding 1d boundary ''C'' = ∂''S'' (a [[closed curve]]):
 
*<math> \oint_{\partial S}\mathbf{A}\cdot d\boldsymbol{\ell}=\iint_{S}\left(\nabla\times\mathbf{A}\right)\cdot d\mathbf{s} </math> {{pad|2em}} ([[Stokes' theorem]])
 
*<math> \oint_{\partial S}\psi d\boldsymbol{\ell}=\iint_{S}\left(\hat{\mathbf{n}}\times\nabla\psi\right)dS </math>
 
Integration around a closed curve in the [[clockwise]] sense is the negative of the same line integral in the counterclockwise sense (analogous to interchanging the limits in a [[definite integral]]):
 
:{{intorient|
| preintegral = {{intorient|
| preintegral =
|symbol=oint
| intsubscpt = <math>{\scriptstyle \partial S}</math>
| integrand = <math>\mathbf{A}\cdot{\rm d}\boldsymbol{\ell}=-</math>
}}
|symbol=ointctr
| intsubscpt = <math>{\scriptstyle \partial S}</math>
| integrand = <math>\mathbf{A}\cdot{\rm d}\boldsymbol{\ell}.</math>
}}
 
==See also==
* [[Exterior derivative]]
* [[Vector calculus]]
* [[Del in cylindrical and spherical coordinates]]
* [[Comparison of vector algebra and geometric algebra]]
 
==Notes and references==
{{reflist}}
 
==Further reading==
{{Refbegin}}
* {{cite book | title = Advanced Engineering Electromagnetics | first = Constantine A. | last = Balanis | isbn = 0-471-62194-3 }}
* {{cite book | first = H. M. | last = Schey | title = Div Grad Curl and all that:  An informal text on vector calculus | publisher=W. W. Norton & Company | year= 1997 | isbn = 0-393-96997-5 }}
* {{cite book | first = David J. | last = Griffiths | title = Introduction to Electrodynamics | publisher=Prentice Hall|year=1999|isbn= 0-13-805326-X}}
{{Refend}}
 
<!--List of vector identities, oldid=343957081-->
 
[[Category:Vector calculus]]
[[Category:Mathematical identities]]
[[Category:Mathematics-related lists]]
 
[[bs:Spisak vektorskih identiteta]]
[[eo:Vektoraj identoj]]
[[zh:向量恆等式列表]]

Latest revision as of 11:26, 11 November 2014

Marvella is what you can contact her but it's not the most female name out there. For years I've been operating as a payroll clerk. Doing ceramics is what adore performing. South Dakota is her birth location but she needs to move simply because of her family.

My web blog ... home std test