|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| [[Image:Anti-reflective coating comparison.jpg|thumb|right|200px|Uncoated glasses lens (top) versus lens with antireflective coating. Note the tinted reflection from the coated lens.]] An '''antireflective''' or '''anti-reflection''' ('''AR''')''' coating''' is a type of [[optical coating]] applied to the surface of [[lens (optics)|lens]]es and other optical devices to reduce [[reflection (physics)|reflection]]. This improves the efficiency of the system since less [[light]] is lost. In complex systems such as a [[telescope]], the reduction in reflections also improves the [[Contrast (vision)|contrast]] of the image by elimination of [[stray light]]. This is especially important in [[planetary astronomy]]. In other applications, the primary benefit is the elimination of the reflection itself, such as a coating on [[glasses|eyeglass]] lenses that makes the eyes of the wearer more visible to others, or a coating to reduce the glint from a covert viewer's [[binoculars]] or [[telescopic sight]].
| | I'm Lavada and I live with my husband and our two children in Rigomagno, in the SI south area. My hobbies are Locksport, Videophilia (Home theater) and Rock collecting.<br><br>Look into my page: [http://www.dailyburnout.com/sports/bootcamp-calorie-burn-workout/ Fifa Coin Generator] |
| | |
| Many coatings consist of transparent [[thin-film optics|thin film]] structures with alternating layers of contrasting [[refractive index]]. Layer thicknesses are chosen to produce [[destructive interference]] in the beams reflected from the interfaces, and constructive interference in the corresponding transmitted beams. This makes the structure's performance change with wavelength and [[incident angle]], so that color effects often appear at [[oblique angle]]s. A [[wavelength]] range must be specified when designing or ordering such coatings, but good performance can often be achieved for a relatively wide range of [[frequencies]]: usually a choice of [[infrared|IR]], visible, or [[ultraviolet|UV]] is offered.
| |
| | |
| ==Applications==
| |
| Anti-reflective coatings are used in a wide variety of applications where light passes through an optical surface, and low loss or low reflection is desired. Examples include anti-glare coatings on [[corrective lens]]es and [[camera lens]] elements.
| |
| | |
| === Corrective lenses ===
| |
| [[Optician]]s dispense "anti-reflection lenses" because the decreased reflection makes them look better, and they produce less [[light pollution#Glare|glare]], which is particularly noticeable when driving at night or working in front of a [[computer monitor]]. The decreased glare means that wearers often find their eyes are less tired, particularly at the end of the day. Allowing more light to pass through the lens also increases [[contrast (vision)|contrast]] and therefore increases visual acuity.
| |
| | |
| Antireflective ophthalmic lenses should not be confused with [[polarizer|polarized lenses]], which decrease (by absorption) the visible glare of sun reflected off of surfaces such as sand, water, and roads. The term "antireflective" relates to the reflection from the surface of the lens itself, not the origin of the light that reaches the lens.
| |
| | |
| Many anti-reflection lenses include an additional coating that repels [[water]] and [[Fat|grease]], making them easier to keep clean. Anti-reflection coatings are particularly suited to high-[[refractive index|index]] lenses, as these reflect more light without the coating than a lower-index lens (a consequence of the [[Fresnel equations]]). It is also generally easier and cheaper to coat high index glasses.
| |
| | |
| ===Photolithography===
| |
| Antireflective coatings are often in microelectronic [[photolithography]] to help reduce image distortions associated with reflections off the surface of the substrate. Different types of antireflective coatings are applied either before or after the [[photoresist]], and help reduce [[standing wave]]s, thin-film interference, and specular reflections.<ref>[http://people.rit.edu/deeemc/courses/0305-676/reference/arcs/understanding_BARC.pdf Understanding bottom antireflective coatings]</ref><ref>{{Cite conference
| |
| | publisher = SPIE
| |
| | doi = 10.1117/12.535034
| |
| | volume = 5375
| |
| | pages = 940-948
| |
| | last = Yet
| |
| | first = Siew Ing
| |
| | title = Investigation of UFO defect on DUV CAR and BARC process
| |
| | accessdate = 2012-06-25
| |
| | date = 2004
| |
| | url = http://adsabs.harvard.edu/abs/2004SPIE.5375..940Y
| |
| }}</ref>
| |
| | |
| == Types ==
| |
| === Index-matching ===
| |
| The simplest form of anti-reflective coating was discovered by [[John William Strutt, 3rd Baron Rayleigh|Lord Rayleigh]] in 1886. The optical glass available at the time tended to develop a [[tarnish]] on its surface with age, due to chemical reactions with the environment. Rayleigh tested some old, slightly tarnished pieces of glass, and found to his surprise that they transmitted ''more'' light than new, clean pieces. The tarnish replaces the air-glass interface with two interfaces: an air-tarnish interface and a tarnish-glass interface. Because the tarnish has a [[refractive index]] between those of glass and air, each of these interfaces exhibits less reflection than the air-glass interface did. In fact, the total of the two reflections is less than that of the "naked" air-glass interface, since for near-normal incidence the reflectivity is proportional to the square of the difference in refractive index; see [[Fresnel equations]].
| |
| | |
| === Single-layer interference ===
| |
| The simplest interference AR coating consists of a single quarter-wave layer of [[transparency (optics)|transparent]] material whose refractive index is the [[square root]] of the substrate's refractive index; this, theoretically, gives zero [[reflectance]] at the center wavelength and decreased reflectance for wavelengths in a broad band around the center.
| |
| | |
| The most common type of optical glass is [[Crown glass (optics)|crown glass]], which has an index of refraction of about 1.52. An optimum single layer coating would have to be made of a material with an index of about 1.23. Unfortunately, there are no solid materials with such a low refractive index. The closest materials with good physical properties for a coating are [[magnesium fluoride]], MgF<sub>2</sub> (with an index of 1.38), and [[fluoropolymer]]s (which can have indices as low as 1.30, but are more difficult to apply).<ref name="anti-reflective fluoride coatings">{{cite web |url=http://www.jsr.co.jp/jsr_e/pd/op_a02.shtml |title=Opstar AR fluoride coatings and application methods}}</ref> MgF<sub>2</sub> on a crown glass surface gives a reflectance of about 1%, compared to 4% for bare glass. MgF<sub>2</sub> coatings perform much better on higher-index glasses, especially those with index of refraction close to 1.9. MgF<sub>2</sub> coatings are commonly used because they are cheap, and when they are designed for a wavelength in the middle of the [[visible light|visible band]] they give reasonably good anti-reflection over the entire band. Researchers have produced films of [[mesoporous silica]] [[nanoparticle]]s with refractive indices as low as 1.12, which function as antireflection coatings.<ref name="Single-Layer Antireflective Optical Coating">{{cite web |url=http://pubs.acs.org/doi/abs/10.1021/am201494m|title=High-Performance, Single-Layer Antireflective Optical Coatings Comprising Mesoporous Silica Nanoparticles}}</ref>
| |
| | |
| === Multi-layer interference ===
| |
| [[File:Verguetung1.jpg|thumb|right|Multicoated photographic lens]]
| |
| By using alternating layers of a low-index material like [[silica]] and a higher-index material it is possible to obtain reflectivities as low as 0.1% at a single wavelength. Coatings that give very low reflectivity over a broad band can also be made, although these are complex and relatively expensive. [[Optical coating]]s can also be made with special characteristics, such as near-zero reflectance at multiple wavelengths, or optimum performance at [[angle of incidence|angles of incidence]] other than 0°.
| |
| | |
| === Absorbing ===
| |
| An additional category of anti-reflection coatings is the so-called "absorbing ARC". These coatings are useful in situations where high transmission through a surface is unimportant or undesirable, but low reflectivity is required. They can produce very low reflectance with few layers, and can often be produced more cheaply, or at greater scale, than standard non-absorbing AR coatings. (See, for example, [http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=39&f=G&l=50&co1=AND&d=PTXT&s1=viratec&OS=viratec&RS=viratec US Patent 5,091,244].) Absorbing ARCs often make use of unusual optical properties exhibited in compound thin films produced by [[sputter deposition]]. For example, [[titanium nitride]] and [[niobium nitride]] are used in absorbing ARCs. These can be useful in applications requiring [[Contrast (vision)|contrast]] enhancement or as a replacement for tinted glass (for example, in a [[Cathode ray tube|CRT display]]).
| |
| | |
| === Moth eye ===
| |
| [[Moth]]s' eyes have an unusual property: their surfaces are covered with a natural [[nanostructure]]d film which eliminates reflections. This allows the moth to see well in the dark, without reflections to give its location away to predators.<ref>
| |
| {{cite journal
| |
| |url=http://www.fraunhofer.de/archiv/magazin04-08/fhg/Images/magazine2.2005_tcm6-43699.pdf
| |
| |format=PDF
| |
| |title=Nanostructured Surfaces
| |
| |work=[[Fraunhofer Magazine]]
| |
| |year=2005 |issue=2 |page=10
| |
| |accessdate=2000-06-17
| |
| }}</ref> The structure consists of a hexagonal pattern of bumps, each roughly 200 nm high and spaced on 300 nm centers.<ref name=Reflexite>
| |
| {{cite web
| |
| |url=http://www.display-optics.com/pdf/Moth-eye%20Antireflective%20Microstructure.pdf
| |
| |title=Moth-eye Antireflective Microstructures
| |
| |format=PDF
| |
| |publisher=Reflexite Corporation
| |
| |year=2006
| |
| |accessdate=2009-06-17
| |
| }}</ref> This kind of antireflective coating works because the bumps are smaller than the wavelength of visible light, so the light sees the surface as having a continuous [[gradient-index optics|refractive index gradient]] between the air and the medium, which decreases reflection by effectively removing the air-lens interface. Practical anti-reflective films have been made by humans using this effect;<ref>
| |
| {{cite press
| |
| |url=http://www.engineeringtalk.com/news/aue/aue124.html
| |
| |title=Novel film inspired by moths
| |
| |publisher=Pro-talk
| |
| |year=3 December 2003
| |
| |accessdate=2009-06-17
| |
| }}</ref> this is a form of [[biomimicry]].
| |
| | |
| === Circular polarizer ===
| |
| [[Image:Circular_polarizer_as_anti-reflective_coating.png|thumb|right|Reflections are blocked by a circular polarizer]]
| |
| A [[circular polarizer]] laminated to a surface can be used to eliminate reflections.<ref>{{cite web |url=http://www.visionteksystems.co.uk/polarisercircular.htm |title=HNCP Circular Polarizing Filter}}</ref>{{Better source|date=August 2013}} The polarizer transmits light with one [[chirality]] ('handedness') of circular polarization. Light reflected from the surface after the polarizer is transformed into the opposite 'handedness'. This light cannot pass back through the circular polarizer because its chirality has changed (e.g. from right circular polarized to left circularly polarized).
| |
| | |
| == Theory ==
| |
| [[Image:Antireflection coating split pic.jpg|thumb|An anti-reflection coated window, shown at a 45° and a 0° angle of incidence.]]
| |
| There are two separate causes of optical effects due to coatings, often called ''thick film'' and ''thin film'' effects. Thick film effects arise because of the difference in the [[index of refraction]] between the layers above and below the coating (or ''film''); in the simplest case, these three layers are the air, the coating, and the glass. Thick film coatings do not depend on how thick the coating is, so long as the coating is much thicker than a wavelength of light. Thin film effects arise when the thickness of the coating is approximately the same as a quarter or a half a wavelength of light. In this case, the reflections of a steady source of light can be made to [[destructive interference|add destructively]], and hence reduce reflections by a separate mechanism. In addition to depending very much on the thickness of the film, and the wavelength of light, thin film coatings depend on the angle at which the light strikes the coated surface.
| |
| | |
| === Reflection ===
| |
| Whenever a [[ray (optics)|ray]] of light moves from one [[medium (optics)|medium]] to another (for example, when light enters a sheet of [[glass]] after travelling through [[air]]), some portion of the light is reflected from the surface (known as the ''interface'') between the two media. This can be observed when looking through a [[window]], for instance, where a (weak) reflection from the front and back surfaces of the window glass can be seen. The strength of the reflection depends on the [[refractive index|refractive indices]] of the two media as well as the angle of the surface to the beam of light. The exact value can be calculated using the [[Fresnel equations]].
| |
| | |
| When the light meets the interface at [[normal incidence]] (perpendicularly to the surface), the intensity of light reflected is given by the ''reflection coefficient'' or ''reflectance'', ''R'':
| |
| :<math>R = \left( \frac{n_0 - n_S}{n_0 + n_S} \right) ^2</math>,
| |
| where ''n''<sub>0</sub> and ''n''<sub>S</sub> are the refractive indices of the first and second media, respectively. The value of ''R'' varies from 0 (no reflection) to 1 (all light reflected) and is usually quoted as a [[percentage]]. Complementary to ''R'' is the ''transmission coefficient'' or ''transmittance'', ''T''. If [[absorption (electromagnetic radiation)|absorption]] and [[scattering]] are neglected, then the value ''T'' is always 1–''R''. Thus if a beam of light with [[Intensity (physics)|intensity]] ''I'' is incident on the surface, a beam of intensity ''RI'' is reflected, and a beam with intensity ''TI'' is transmitted into the medium.
| |
| | |
| [[Image:Optical-coating-1.png|left|Reflection and transmission of an uncoated and coated surface]]
| |
| | |
| For the simplified scenario of visible light travelling from air (''n''<sub>0</sub>≈1.0) into common glass ({{nowrap|''n''<sub>S</sub> ≈ 1.5}}), value of ''R'' is 0.04, or 4% on a single reflection. So at most 96% of the light ({{nowrap|''T'' {{=}} 1 − ''R'' {{=}} 0.96}}) actually enters the glass, and the rest is reflected from the surface. The amount of light reflected is known as the ''reflection loss''.
| |
| | |
| In the more complicated scenario of multiple reflections, say with light travelling through a window, light is reflected both when going from air to glass and at the other side of the window when going from glass back to air. The size of the loss is the same in both cases. Light also may bounce from one surface to another multiple times, being partially reflected and partially transmitted each time it does so. In all, the combined reflection coefficient is given by {{nowrap|2''R''/(1 + ''R'')}}. For glass in air, this is about 7.7%.
| |
| {{clear}}
| |
| | |
| === Rayleigh's film ===
| |
| As observed by Lord Rayleigh, a thin film (such as tarnish) on the surface of glass can reduce the reflectivity. This effect can be explained by envisioning a thin layer of material with refractive index ''n''<sub>1</sub> between the air (index ''n''<sub>0</sub>) and the glass (index ''n''<sub>S</sub>). The light ray now reflects twice: once from the surface between air and the thin layer, and once from the layer-to-glass interface.
| |
| | |
| From the equation above, and the known refractive indices, reflectivities for both interfaces can be calculated, and denoted ''R''<sub>01</sub> and ''R''<sub>1S</sub>, respectively. The transmission at each interface is therefore {{nowrap|''T''<sub>01</sub> {{=}} 1 − ''R''<sub>01</sub>}} and {{nowrap|''T''<sub>1S</sub> {{=}} 1 − ''R''<sub>1S</sub>}}. The total transmittance into the glass is thus ''T''<sub>1S</sub>''T''<sub>01</sub>. Calculating this value for various values of ''n''<sub>1</sub>, it can be found that at one particular value of optimum refractive index of the layer, the transmittance of both interfaces is equal, and this corresponds to the maximum total transmittance into the glass.
| |
| | |
| This optimum value is given by the [[geometric mean]] of the two surrounding indices:
| |
| | |
| :<math>n_1 = \sqrt{n_0 n_S}</math>.
| |
| | |
| For the example of glass ({{nowrap|''n''<sub>S</sub> ≈ 1.5}}) in air ({{nowrap|''n''<sub>0</sub> ≈ 1.0}}), this optimum refractive index is {{nowrap|''n''<sub>1</sub> ≈ 1.225}}.<ref>
| |
| {{cite journal
| |
| |last=Krepelka |first=J.
| |
| |journal=[[Jemná Mechanika A Optika]]
| |
| |volume= |issue=3–5 |page=53
| |
| |url=http://aix.upol.cz/~krepelka/jmo1992.pdf
| |
| |format=PDF
| |
| |title=Maximally flat antireflection coatings
| |
| |year=1992
| |
| |accessdate=2009-06-17
| |
| }}</ref><ref name=Moreno>
| |
| {{cite journal
| |
| |last=Moreno |first=I. |last2= Araiza |first2=J. |last3= Avendano-Alejo |first3=M.
| |
| |title=Thin-film spatial filters
| |
| |journal=[[Optics Letters]]
| |
| |volume=30 |issue=8 |pages=914–916
| |
| |year=2005
| |
| |doi=10.1364/OL.30.000914
| |
| |url=http://planck.reduaz.mx/~imoreno/Publicaciones/OptLett2005.pdf
| |
| |format=PDF |pmid=15865397
| |
| |bibcode = 2005OptL...30..914M }}</ref>
| |
| | |
| The reflection loss of each interface is approximately 1.0% (with a combined loss of 2.0%), and an overall transmission ''T''<sub>1S</sub>''T''<sub>01</sub> of approximately 98%. Therefore an intermediate coating between the air and glass can halve the reflection loss.
| |
| | |
| === Interference coatings ===
| |
| The use of an intermediate layer to form an anti-reflection coating can be thought of as analoguous to the technique of [[impedance matching]] of electrical signals. (A similar method is used in [[optical fiber|fibre optic]] research where an ''index matching oil'' is sometimes used to temporarily defeat [[total internal reflection]] so that light may be coupled into or out of a fiber.) Further reduced reflection could in theory be made by extending the process to several layers of material, gradually blending the refractive index of each layer between the index of the air and the index of the substrate.
| |
| | |
| Practical anti-reflection coatings, however, rely on an intermediate layer not only for its direct reduction of reflection coefficient, but also use the [[Interference (wave propagation)|interference]] effect of a thin layer. Assume the layer's thickness is controlled precisely, such that it is exactly one quarter of the wavelength of light in the layer ({{nowrap|λ/4 {{=}} λ<sub>0</sub>/(4''n''<sub>1</sub>)}}, where λ<sub>0</sub> is the vacuum wavelength). The layer is then called a ''quarter-wave coating''. For this type of coating a normally incident beam I, when reflected from the second interface, will travel exactly half its own wavelength further than the beam reflected from the first surface, leading to destructive interference. This is also true for thicker coating layers (3λ/4, 5λ/4, etc.), however the anti-reflective performance is worse in this case due to the stronger dependence of the reflectance on wavelength and the angle of incidence.
| |
| | |
| If the intensities of the two beams ''R''<sub>1</sub> and ''R''<sub>2</sub> are exactly equal, they will destructively interfere and cancel each other since they are exactly out of [[phase (waves)|phase]]. Therefore, there is no reflection from the surface, and all the energy of the beam must be in the transmitted ray, T. In the calculation of the reflection from a stack of layers, the [[transfer-matrix method (optics)|transfer-matrix method]] can be used.
| |
| | |
| [[Image:Optical-coating-2.png|frame|right|Interference in a quarter-wave anti-reflection coating]]
| |
| | |
| Real coatings do not reach perfect performance, though they are capable of reducing a surface's reflection coefficient to less than 0.1%. Also, the layer will be the ideal thickness for only one distinct wavelength of light. Other difficulties include finding suitable materials for use on ordinary glass, since few useful substances have the required refractive index ({{nowrap|''n'' ≈ 1.23}}) which will make both reflected rays exactly equal in intensity. [[Magnesium fluoride]] (MgF<sub>2</sub>) is often used, since this is hard-wearing and can be easily applied to substrates using [[physical vapor deposition|physical vapour deposition]], even though its index is higher than desirable ({{nowrap|''n'' {{=}} 1.38}}).
| |
| | |
| Further reduction is possible by using multiple coating layers, designed such that reflections from the surfaces undergo maximum destructive interference. One way to do this is to add a second quarter-wave thick higher-index layer between the low-index layer and the substrate. The reflection from all three interfaces produces destructive interference and anti-reflection. Other techniques use varying thicknesses of the coatings. By using two or more layers, each of a material chosen to give the best possible match of the desired refractive index and [[dispersion (optics)|dispersion]], broadband anti-reflection coatings which cover the [[visible light|visible range]] (400–700 nm) with maximum reflectivities of less than 0.5% are commonly achievable.
| |
| | |
| The exact nature of the coating determines the appearance of the coated optic; common AR coatings on eyeglasses and photographic lenses often look somewhat bluish (since they reflect slightly more blue light than other visible wavelengths), though green and pink-tinged coatings are also used.
| |
| | |
| If the coated optic is used at non-normal incidence (that is, with light rays not perpendicular to the surface), the anti-reflection capabilities are degraded somewhat. This occurs because the phase accumulated in the layer ''relative to the phase of the light immediately reflected'' decreases as the angle increases from normal. This is counterintuitive, since the ray experiences a greater total phase shift in the layer than for normal incidence. This paradox is resolved by noting that the ray will exit the layer spatially offset from where it entered, and will interfere with reflections from incoming rays that had to travel further (thus accumulating more phase of their own) to arrive at the inteface. The net effect is that the relative phase is actually reduced, shifting the coating, such that the anti-reflection band of the coating tends to move to shorter wavelengths as the optic is tilted. Non-normal incidence angles also usually cause the reflection to be [[Polarization (waves)|polarization]] dependent.
| |
| | |
| === Textured coatings ===
| |
| | |
| Reflection can be reduced by texturing the surface with 3D pyramids or 2D grooves (gratings).
| |
| | |
| If wavelength is greater than the texture size, the texture behaves like a gradient index film with reduced reflection. To calculate reflection in this case [[effective medium approximations]] can be used. To minimize reflection various profiles of pyramids have been proposed, such as cubic, quintic or integral exponential profiles.
| |
| | |
| If wavelength is smaller than the textured size, the reflection reduction can be explained with the help of the [[geometric optics]] approximation: rays should be reflected many times before they are sent back toward the source. In this case the reflection can be calculated using [[Ray tracing (physics)|ray tracing]].
| |
| | |
| Using texture reduces reflection for wavelengths comparable with the feature size as well. In this case no approximation is valid, and reflection can be calculated by [[Computational electromagnetics|solving Maxwell equations numerically]].
| |
| | |
| Antireflective properties of textured surfaces are well discussed in literature for a wide range of size-to-wavelength ratios (including long- and short- wave limits) to find the optimal texture size.<ref>
| |
| {{cite journal
| |
| |author= A. Deinega et. al.
| |
| |url=http://www.opticsinfobase.org/josaa/abstract.cfm?uri=josaa-28-5-770
| |
| |title=Minimizing light reflection from dielectric textured surfaces
| |
| |journal=JOSA A
| |
| |volume= 28
| |
| |pages= 770
| |
| |year=2011
| |
| }}</ref>
| |
| | |
| ==History==
| |
| {{expand section|date=January 2013}}
| |
| As mentioned [[#Index-matching|above]], natural index-matching "coatings" were discovered by Lord Rayleigh in 1886. [[Harold Dennis Taylor]] of Cooke company developed a chemical method for producing such coatings in 1904.<ref>{{cite book |title=Thin Film Optical Filters |first=H A |last=MacLeod |publisher=CRC |year=2001 |page=4 |edition=3rd|isbn=9780750306881}}</ref><ref>British Patent 29561, Dec 31, 1904</ref>
| |
| | |
| Interference-based coatings were invented and developed in 1935 by [[Olexander Smakula]], who was working for the [[Carl Zeiss AG|Carl Zeiss]] optics company.<ref name=Smakula>{{cite web |url=http://corporate.zeiss.com/history/en_de/technical-milestones/technical-milestones-photo-and-cinepotics.html#inpagetabs-2 |title=History of Camera Lenses from Carl Zeiss - 1935 - Alexander Smakula develops anti-reflection coating |work=Zeiss.com |accessdate=June 15, 2013}}</ref><ref>{{cite web |url=http://sportsoptics.zeiss.com/hunting/en_us/experience/competences/lens-coating.html |title=Lens coating |work=Zeiss.com |accessdate=June 15, 2013}}</ref><ref>Patent {{cite patent |country=DE |number=685767 |pubdate=1935-11-01 |title=Verfahren zur Erhoehung der Lichtdurchlaessigkeit optischer Teile durch Erniedrigungdes Brechungsexponenten an den Grenzflaechen dieser optischen Teile |assign1= Zeiss Carl FA}}</ref> Anti-reflection coatings were a German military secret until the early stages of [[World War II]].<ref>
| |
| {{cite web
| |
| |url=http://www.smecc.org/ziess.htm
| |
| |title=Carl Zeiss – A History Of A Most Respected Name In Optics
| |
| |publisher=[[Southwest Museum of Engineering, Communications and Computation]]
| |
| |year=2007
| |
| }}</ref> [[Katharine Burr Blodgett]] and [[Irving Langmuir]] developed organic anti-reflection coatings in the late 1930s.{{Citation needed|date=October 2008}}
| |
| | |
| == See also ==
| |
| * [[Thin-film interference]]
| |
| * [[Lens flare]], which AR coating helps to reduce.
| |
| * [[Anti-scratch coating]]
| |
| * [[Dichroic filter]]
| |
| | |
| ==References==
| |
| {{reflist}}
| |
| {{ref begin}}
| |
| *{{cite book
| |
| |first=E. |last=Hecht
| |
| |year=1987
| |
| |title=Optics
| |
| |edition=2nd
| |
| |publisher=[[Addison–Wesley]]
| |
| |isbn=0-201-11609-X
| |
| }}
| |
| {{ref end}}
| |
| | |
| == External links ==
| |
| * [http://clearapertures.com/dopub/Design%20Online.html Browser-based thin film design and optimization software]
| |
| * [http://www.calctool.org/CALC/phys/optics/thin_film Browser-based numerical calculator of single-layer thin film reflectivity]
| |
| | |
| {{Glass science}}
| |
| {{Use dmy dates|date=June 2011}}
| |
| | |
| [[Category:Thin-film optics]]
| |