Fock matrix: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
Undid revision 586106086 by 108.20.176.53 (talk)
en>Colonies Chris
m sp, date & link fixes; unlinking common words, replaced: Hartree-Fock → Hartree–Fock (2) using AWB
 
Line 1: Line 1:
[[Image:Two-port parameters.PNG|thumb|180px|right|Figure 1: Example two-port network with symbol definitions. Notice the '''port condition''' is satisfied: the same current flows into each port as leaves that port.]]
Luke Bryan is often a celebrity inside the earning plus the vocation expansion initial second to his 3rd hotel albumAnd , may be the evidence. He burst to the picture in 2013 with his unique combination of downward-property availability, video  [http://www.museodecarruajes.org concert tickets for luke bryan] star wonderful appearance and  words, is set t within a main way. The new recording Top about the region graph and #2 on the put maps, building it the second highest debut during those times of 2000 for any land musician. <br><br>The boy of a , is aware of determination and dedication are important elements when it comes to an effective occupation- . His to start with recordingContinue to be Me, produced the best reaches “All My Buddies Say” and “Country Guy,when his effort, Doin’ Point, identified the performer-3 directly No. 6 men and   [http://www.hotelsedinburgh.org ticket resale] womenElse Phoning Is actually a Good Issue.<br><br>In the fall of 1999, Concert tours: Luke And that have an outstanding list of , which include Downtown. “It’s almost like you’re receiving a   acceptance to visit one stage further, states these artists that had been an element of the  Concert toursmore than into a larger sized amount of artists.” It wrapped as the best  organized tours in its twenty-season history.<br><br>My site [http://www.banburycrossonline.com luke bryan schedule]
A '''two-port network''' (a kind of '''four-terminal network''' or '''quadripole''') is an [[electrical network]] ([[Electrical circuit|circuit]]) or device with two ''pairs'' of terminals to connect to external circuits. Two terminals constitute a '''port''' if the currents applied to them satisfy the essential requirement known as the '''port condition''': the [[electric current]] entering one terminal must equal the current emerging from the other terminal on the same port.<ref name=Gray>Gray, §3.2, p.&nbsp;172</ref><ref name=Jaeger>Jaeger, §10.5 §13.5 §13.8</ref>  The ports constitute interfaces where the network connects to other networks, the points where signals are applied or outputs are taken. In a two-port network, often port 1 is considered the input port and port 2 is considered the output port. 
 
The two-port network model is used in mathematical [[circuit analysis]] techniques to isolate portions of larger circuits.  A two-port network is regarded as a "[[black box]]" with its properties specified by a [[matrix (mathematics)|matrix]] of numbers. This allows the response of the network to signals applied to the ports to be calculated easily, without solving for all the internal voltages and currents in the network.  It also allows similar circuits or devices to be compared easily.  For example, transistors  are often regarded as two-ports, characterized by their h-parameters (see below) which are listed by the manufacturer.  Any [[linear circuit]] with four terminals can be regarded as a two-port network provided that it does not contain an independent source and satisfies the port conditions.
 
Examples of circuits analyzed as two-ports are [[filter (signal processing)|filter]]s, [[matching network]]s,  [[transmission line]]s, [[transformer]]s, and [[small-signal model]]s for transistors (such as the [[hybrid-pi model]]). The analysis of passive two-port networks is an outgrowth of [[Reciprocity (electromagnetism)#Reciprocity for electrical networks|reciprocity theorems]] first derived by Lorentz.<ref>[http://www.ieee.org/organizations/pubs/newsletters/emcs/summer03/jasper.pdf Jasper J.&nbsp;Goedbloed, ''Reciprocity and EMC measurements'']</ref>  
 
In two-port mathematical models, the network is described by a 2 by 2 square matrix of [[complex number]]s. The common models that are used are referred to as ''z-parameters'', ''y-parameters'', ''h-parameters'', ''g-parameters'', and  ''ABCD-parameters'', each described individually below. These are all limited to linear networks since an underlying assumption of their derivation is that any given circuit condition is a linear superposition of various short-circuit and open circuit conditions.  They are usually expressed in matrix notation, and they establish relations between the variables
:<math>V_1</math>, voltage across port 1
:<math>I_1</math>, current into port 1
:<math>V_2</math>, voltage across port 2
:<math>I_2</math>, current into port 2
 
which are shown in figure&nbsp;1. These [[electric current|current]] and [[voltage]] variables are most useful at low-to-moderate frequencies. At high frequencies (e.g., microwave frequencies), the use of [[Power (physics)|power]] and [[energy]] variables is more appropriate, and the two-port current&ndash;voltage approach is replaced by an approach based upon [[scattering parameters]].
 
==General properties==
There are certain properties of two-ports that frequently occur in practical networks and can be used to greatly simplify the analysis. These include:
 
;[[Reciprocity (electromagnetism)#Reciprocity for electrical networks|Reciprocal networks]]:  A network is said to be reciprocal if the voltage appearing at port 2 due to a current applied at port 1 is the same as the voltage appearing at port 1 when the same current is applied to port 2.  Exchanging voltage and current results in an equivalent definition of reciprocity.  In general, a network will be reciprocal if it consists entirely of linear passive components (that is, resistors, capacitors and inductors).  In general, it ''will not'' be reciprocal if it contains active components such as generators.<ref>Nahvi, p.311.</ref>
 
;Symmetrical networks:  A network is symmetrical if its input impedance is equal to its output impedance.  Most often, but not necessarily, symmetrical networks are also physically symmetrical.  Sometimes also [[Antimetric (electrical networks)|antimetrical networks]] are of interest.  These are networks where the input and output impedances are the [[dual impedance|duals]] of each other.<ref>Matthaei et al, pp.&nbsp;70&ndash;72.</ref>
 
;Lossless network:  A lossless network is one which contains no resistors or other dissipative elements.<ref name=Matt27>Matthaei et al, p.27.</ref>
 
==Impedance parameters (z-parameters)==
[[Image:Z-equivalent two port.png|thumbnail|300px| Figure&nbsp;2: z-equivalent two port showing independent variables ''I<sub>1</sub>'' and ''I<sub>2</sub>''. Although resistors are shown, general impedances can be used instead.]]
{{main|Impedance parameters}}
 
:<math> \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} </math>
 
where
 
:<math>\begin{align}
  z_{11} \,&\stackrel{\text{def}}{=}\, \left. \frac{V_1}{I_1} \right|_{I_2 = 0} \qquad z_{12} \,\stackrel{\text{def}}{=}\, \left. \frac{V_1}{I_2} \right|_{I_1 = 0} \\
  z_{21} \,&\stackrel{\text{def}}{=}\, \left. \frac{V_2}{I_1} \right|_{I_2 = 0} \qquad z_{22} \,\stackrel{\text{def}}{=}\, \left. \frac{V_2}{I_2} \right|_{I_1 = 0}
\end{align}</math>
 
Notice that all the z-parameters have dimensions of [[ohms]].
 
For reciprocal networks <math>\textstyle z_{12} = z_{21}</math>.  For symmetrical networks <math>\textstyle z_{11} = z_{22}</math>.  For reciprocal lossless networks all the <math>\textstyle z_\mathrm {mn}</math> are purely imaginary.<ref name=Matt29>Matthaei et al, p.29.</ref>
 
===Example: bipolar current mirror with emitter degeneration===
[[Image:Current mirror.png|thumbnail|left|200px| Figure&nbsp;3: Bipolar current mirror: ''i<sub>1</sub>'' is the ''reference current'' and ''i''<sub>2</sub> is the ''output current''; lower case symbols indicate these are ''total'' currents that include the DC components]]
[[Image:Smal-signal mirror circuit.png|thumbnail|right|300px| Figure&nbsp;4: Small-signal bipolar current mirror: ''I''<sub>1</sub> is the amplitude of the small-signal ''reference current'' and ''I''<sub>2</sub> is the amplitude of the small-signal ''output current'']]
Figure&nbsp;3 shows a bipolar current mirror with emitter resistors to increase its output resistance.<ref group="nb">The emitter-leg resistors counteract any current increase by decreasing the transistor ''V<sub>BE</sub>''. That is, the resistors ''R<sub>E</sub>'' cause negative feedback that opposes change in current. In particular, any change in output voltage results in less change in current than without this feedback, which means the output resistance of the mirror has increased.</ref> Transistor ''Q''<sub>1</sub> is ''diode connected'', which is to say its collector-base voltage is zero. Figure&nbsp;4 shows the small-signal circuit equivalent to Figure&nbsp;3. Transistor ''Q''<sub>1</sub> is represented by its emitter resistance ''r<sub>E</sub>'' ≈ ''V<sub>T</sub>&nbsp;/&nbsp;I<sub>E</sub>'' (''V<sub>T</sub>'' = thermal voltage, ''I<sub>E</sub>'' = [[Q-point]] emitter current), a simplification made possible because the dependent current source in the hybrid-pi model for ''Q''<sub>1</sub> draws the same current as a resistor 1&nbsp;/&nbsp;''g<sub>m</sub>'' connected across ''r<sub>&pi;</sub>''. The second transistor ''Q<sub>2</sub>'' is represented by its [[hybrid-pi model]]. Table 1 below shows the z-parameter expressions that make the z-equivalent circuit of Figure&nbsp;2 electrically equivalent to the small-signal circuit of Figure&nbsp;4.
{| class="wikitable" style="background:white;text-align:center;margin: 1em auto 1em auto"
!Table 1 !! Expression !! Approximation
|-valign="center"
|<math>R_{21} = \left. \frac{V_2}{I_1} \right|_{I_2=0} </math>
|<math>-(\beta r_O - R_E) \frac{r_E + R_E}{r_\pi + r_E + 2R_E} </math>
|<math>-\beta r_o \frac{r_E + R_E }{r_\pi + 2R_E} </math>
|-valign="center"
|<math>R_{11} = \left. \frac{V_1}{I_1} \right|_{I_2=0} </math>
|<math>(r_E + R_E) \| (r_\pi + R_E) </math>{{clarify|reason=What is double vertical bar (||) operator!?|date=April 2013}}
|
|-valign="center"
|<math> R_{22} = \left. \frac{V_2}{I_2} \right|_{I_1=0} </math>
| &nbsp; <math> \left(1 + \beta \frac{R_E}{r_\pi + r_E + 2R_E} \right) r_O + \frac{r_\pi + r_E + R_E}{r_\pi + r_E + 2R_E} R_E</math> &nbsp;
| &nbsp; <math> \left(1 + \beta \frac{R_E}{r_\pi + 2R_E} \right) r_O </math> &nbsp;
|-valign="center"
|<math>R_{12} = \left. \frac{V_1}{I_2} \right|_{I_1=0}</math>
|<math>R_E \frac{r_E + R_E}{r_\pi + r_E + 2R_E}</math>
|<math>R_E \frac{r_E + R_E}{r_\pi + 2R_E}</math>
|}
 
The negative feedback introduced by resistors ''R<sub>E</sub>'' can be seen in these parameters. For example, when used as an active load in a differential amplifier, ''I<sub>1</sub> ≈ −I<sub>2</sub>'', making the output impedance of the mirror approximately ''R<sub>22</sub> -R<sub>21</sub>'' ≈ 2 β ''r<sub>O</sub>R<sub>E</sub>'' /(''r<sub>π</sub> + 2R<sub>E</sub>'') compared to only ''r<sub>O</sub>'' without feedback (that is with ''R<sub>E</sub>'' = 0 Ω) . At the same time, the impedance on the reference side of the mirror is approximately  ''R''<sub>11</sub>&nbsp−&nbsp;''R''<sub>12</sub> ≈ <math> \frac{r_\pi}{r_\pi + 2R_E} </math><math>(r_E + R_E)</math>, only a moderate value, but still larger than ''r<sub>E</sub>'' with no feedback. In the differential amplifier application, a large output resistance increases the difference-mode gain, a good thing, and a small mirror input resistance is desirable to avoid [[Miller effect]].
 
==Admittance parameters (y-parameters)==
[[Image:Y-parameter two-port.PNG|thumbnail|300px| Figure&nbsp;5: Y-equivalent two port showing independent variables ''V''<sub>1</sub> and ''V''<sub>2</sub>. Although resistors are shown, general admittances can be used instead.]]
{{main|Admittance parameters}}
 
:<math> \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} </math>
 
where
 
:<math>\begin{align}
  y_{11} \,&\stackrel{\text{def}}{=}\, \left. \frac{I_1}{V_1} \right|_{V_2 = 0} \qquad y_{12} \,\stackrel{\text{def}}{=}\, \left. \frac{I_1}{V_2 } \right|_{V_1 = 0} \\
  y_{21} \,&\stackrel{\text{def}}{=}\, \left. \frac{I_2}{V_1} \right|_{V_2 = 0} \qquad y_{22} \,\stackrel{\text{def}}{=}\, \left. \frac{I_2}{V_2 } \right|_{V_1 = 0}
\end{align}</math>
 
Notice that all the Y-parameters have dimensions of [[Siemens (unit)|siemens]].
 
For reciprocal networks <math>\textstyle y_{12} = y_{21}</math>.  For symmetrical networks <math>\textstyle y_{11} = y_{22}</math>.  For reciprocal lossless networks all the <math>\textstyle y_\mathrm {mn}</math> are purely imaginary.<ref name=Matt29/>
 
==Hybrid parameters (h-parameters) {{anchor|h-parameters}}== <!-- Other articles link to this section. Fix these links if moving or renaming. New links are advised to use the anchors rather than heading names -->
[[Image:H-equivalent circuit.PNG|thumbnail|300px|Figure&nbsp;6: H-equivalent two-port showing independent variables ''I<sub>1</sub>'' and ''V<sub>2</sub>''; ''h<sub>22</sub>'' is reciprocated to make a resistor]]
:<math> \begin{bmatrix} V_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix} </math>
 
where
 
:<math>\begin{align}
  h_{11} \,&\stackrel{\text{def}}{=}\, \left. \frac{V_1}{I_1} \right|_{V_2 = 0} \qquad h_{12} \,\stackrel{\text{def}}{=}\, \left. \frac{V_1}{V_2} \right|_{I_1 = 0} \\
  h_{21} \,&\stackrel{\text{def}}{=}\, \left. \frac{I_2}{I_1} \right|_{V_2 = 0} \qquad h_{22} \,\stackrel{\text{def}}{=}\, \left. \frac{I_2}{V_2} \right|_{I_1 = 0}
\end{align}</math>
 
This circuit is often selected when a current amplifier is wanted at the output. The resistors shown in the diagram can be general impedances instead.
 
Notice that off-diagonal h-parameters are [[dimensionless]], while diagonal members have dimensions the reciprocal of one another.
 
===Example: common-base amplifier===
[[Image:Common base hybrid pi current follower.PNG|thumbnail|200px|Figure&nbsp;7: Common-base amplifier with AC current source ''I''<sub>1</sub> as signal input and unspecified load supporting voltage ''V''<sub>2</sub> and a dependent current ''I''<sub>2</sub>.]]
'''Note:''' Tabulated formulas in Table 2 make the h-equivalent circuit of the transistor from Figure&nbsp;6 agree with its small-signal low-frequency [[hybrid-pi model]] in Figure&nbsp;7. Notation: ''r<sub>&pi;</sub>'' = base resistance of transistor, ''r''<sub>O</sub> = output resistance, and ''g<sub>m</sub>'' = transconductance. The negative sign for ''h''<sub>21</sub> reflects the convention that ''I''<sub>1</sub>, ''I''<sub>2</sub> are positive when directed ''into'' the two-port. A non-zero value for ''h''<sub>12</sub> means the output voltage affects the input voltage, that is, this amplifier is '''bilateral'''. If ''h''<sub>12</sub> = 0, the amplifier is '''unilateral'''.
 
{| class="wikitable" style="background:white;text-align:center;margin: 1em auto 1em auto"
!Table 2 !! Expression !! Approximation
|-valign="center"
|<math>h_{21} = \left. \frac{ I_{2} }{ I_{1} } \right|_{V_{2}=0} </math>
|<math> -\frac{ \frac{\beta}{\beta + 1} r_O + r_E }{ r_O + r_E } </math>
|<math> -\frac{ \beta }{ \beta + 1 } </math>
|-valign="enter"
|<math>h_{11} = \left. \frac{V_{1}}{I_{1}} \right|_{V_{2}=0}  </math>
|<math> r_E \| r_O </math>
|<math>r_E</math>
|-valign="center"
|<math> h_{22} = \left. \frac{I_{2}}{V_{2}} \right|_{I_{1}=0} </math>
|<math> \frac{1}{(\beta + 1)(r_O + r_E)} </math>
|<math> \frac{1}{(\beta + 1)r_O } </math>
|-valign="center"
|<math> h_{12} = \left. \frac{V_{1}}{V_{2}} \right|_{I_{1}=0} </math>
|<math> \frac{r_E}{r_E + r_O}</math>
|<math> \frac{r_E}{r_O} \ll 1</math>
|}
 
==Inverse hybrid parameters (g-parameters) {{anchor|g-parameters}}==
[[Image:G-equivalent circuit.PNG|thumbnail|300px|Figure&nbsp;8: G-equivalent two-port showing independent variables ''V<sub>1</sub>'' and ''I<sub>2</sub>''; ''g<sub>11</sub>'' is reciprocated to make a resistor]]
:<math> \begin{bmatrix} I_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ I_2 \end{bmatrix} </math>
 
where
 
:<math>\begin{align}
  g_{11} \,&\stackrel{\text{def}}{=}\, \left. \frac{I_1}{V_1} \right|_{I_2 = 0} \qquad g_{12} \,\stackrel{\text{def}}{=}\, \left. \frac{I_1}{I_2} \right|_{V_1 = 0} \\
  g_{21} \,&\stackrel{\text{def}}{=}\, \left. \frac{V_2}{V_1} \right|_{I_2 = 0} \qquad g_{22} \,\stackrel{\text{def}}{=}\, \left. \frac{V_2}{I_2} \right|_{V_1 = 0}
\end{align}</math>
 
Often this circuit is selected when a voltage amplifier is wanted at the output. Notice that off-diagonal g-parameters are dimensionless, while diagonal members have dimensions the reciprocal of one another. The resistors shown in the diagram can be general impedances instead.
 
===Example: common-base amplifier===
[[Image:Common base hybrid pi.PNG|thumbnail|200px|Figure&nbsp;9: Common-base amplifier with AC voltage source ''V''<sub>1</sub> as signal input and unspecified load delivering current ''I''<sub>2</sub> at a dependent voltage ''V''<sub>2</sub>.]]
'''Note:''' Tabulated formulas in Table 3 make the g-equivalent circuit of the transistor from Figure&nbsp;8 agree with its small-signal low-frequency [[hybrid-pi model]] in Figure&nbsp;9. Notation: ''r<sub>&pi;</sub>'' = base resistance of transistor, ''r''<sub>O</sub> = output resistance, and ''g<sub>m</sub>'' = transconductance. The negative sign for ''g''<sub>12</sub> reflects the convention that ''I''<sub>1</sub>, ''I''<sub>2</sub> are positive when directed ''into'' the two-port. A non-zero value for ''g<sub>12</sub>'' means the output current affects the input current, that is, this amplifier is '''bilateral'''. If ''g''<sub>12</sub> = 0, the amplifier is '''unilateral'''.
 
{| class="wikitable" style="background:white;text-align:center;margin: 1em auto 1em auto"
!Table 3  !! Expression !! Approximation
|-valign="center"
|<math>g_{21} = \left. \frac{ V_{2} }{ V_{1} } \right|_{I_{2}=0} </math>
|<math> \frac{r_o}{r_\pi} + g_m r_O + 1 </math>
|<math> g_m r_O </math>
|-valign="center"
|<math>g_{11} = \left. \frac{I_1}{V_1} \right|_{I_2=0} </math>
|<math> \frac{1}{r_\pi}</math>
|<math> \frac{1}{r_\pi}</math>
|-valign="center"
|<math> g_{22} = \left. \frac{V_2}{I_2} \right|_{V_1=0}</math>
|<math> r_O </math>
|<math> r_O </math>
|-valign="center"
|<math> g_{12} = \left. \frac{I_1}{I_2} \right|_{V_1=0} </math>
|<math> -\frac{\beta + 1}{\beta} </math>
|<math> -1 </math> 
|}
 
==ABCD-parameters {{anchor|ABCD-parameters}}== <!-- Other articles link to this section. Fix these links if moving or renaming -->
The ''ABCD''-parameters are known variously as chain, cascade, or transmission line parameters.  There are a number of definitions given for ''ABCD'' parameters, the most common is,<ref>Matthaei et al, p.26.</ref><ref>Ghosh, p.353.</ref>
 
:<math> \begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix} </math>
 
For reciprocal networks <math>\scriptstyle AD-BC=1</math>.  For symmetrical networks <math style="vertical-align:0%;">\scriptstyle A=D</math>. For networks which are reciprocal and lossless, ''A'' and ''D'' are purely real while ''B'' and ''C'' are purely imaginary.<ref name=Matt27/>
 
This representation is preferred because when the parameters are used to represent a cascade of two-ports, the matrices are written in the same order that a network diagram would be drawn, that is, left to right.  However, the examples given below are based on a variant definition;
<!-- IF YOU ARE CONSIDERING CHANGING THIS DEFINITION TO AGREE WITH YOUR FAVOURITE TEXTBOOK - PLEASE DON'T.  IT NEEDS TO AGREE WITH THE TEXT AND THE TABLE OF VALUES.  SEE ALSO THE ALTERNATIVE DEFINITION FURTHER DOWN THE ARTICLE.  IF YOU STILL WANT TO CHANGE IT, PLEASE EXPLAIN WHY ON THE TALK PAGE FIRST. -->
 
:<math> \begin{bmatrix} V_2 \\ I'_2 \end{bmatrix} = \begin{bmatrix} A' & B' \\ C' & D' \end{bmatrix} \begin{bmatrix} V_1 \\ I_1 \end{bmatrix} </math>
 
where
 
:<math>\begin{align}
  A' \,&\stackrel{\text{def}}{=}\, \left. \frac{V_2}{V_1} \right|_{I_1 = 0} &\qquad B' \,&\stackrel{\text{def}}{=}\, \left. \frac{V_2}{I_1} \right|_{V_1 = 0}\\
  C' \,&\stackrel{\text{def}}{=}\, \left. -\frac{I_2}{V_1} \right|_{I_1 = 0} &\qquad D' \,&\stackrel{\text{def}}{=}\, \left. -\frac{I_2}{I_1} \right|_{V_1 = 0}
\end{align}</math>
 
The negative signs in the definitions of parameters <math style="vertical-align:0%;">\scriptstyle C'</math> and <math style="vertical-align:0%;">\scriptstyle D'</math> arise because <math>\scriptstyle I'_2</math> is defined with the opposite sense to <math>\scriptstyle I_2</math>, that is, <math>\scriptstyle I'_2 = -I_2</math>.  The reason for adopting this convention is so that the output current of one cascaded stage is equal to the input current of the next.  Consequently, the input voltage/current matrix vector can be directly replaced with the matrix equation of the preceding cascaded stage to form a combined <math style="vertical-align:0%;">\scriptstyle A'B'C'D'</math> matrix.
 
The terminology of representing the <math style="vertical-align:0%;">\scriptstyle ABCD</math> parameters as a matrix of elements designated ''a''<sub>11</sub> etc. as adopted by some authors<ref>Farago, p.102.</ref> and the inverse <math style="vertical-align:0%;">\scriptstyle A'B'C'D'</math> parameters as a matrix of elements designated ''b''<sub>11</sub> etc. is used here for both brevity and to avoid confusion with circuit elements.
 
:<math>\begin{align}[]
  \left\lbrack\mathbf{a}\right\rbrack &= \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} A  & B  \\ C  & D  \end{bmatrix} \\
  \left\lbrack\mathbf{b}\right\rbrack &= \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} A' & B' \\ C' & D' \end{bmatrix}
\end{align}</math>
 
An ''ABCD'' matrix has been defined for Telephony four-wire Transmission Systems by P K Webb in British Post Office Research Department Report 630 in 1977.
 
===Table of transmission parameters===
The table below lists inverse ''ABCD'' parameters for some simple network elements.
 
{| class="wikitable" border="1"
|- style="background-color: lightgray"
! Element
! '''[b]''' matrix
! Remarks
|-
| Series resistor
| align="center" |<math>\begin{bmatrix} 1 & -R \\ 0 & 1 \end{bmatrix} </math>
| ''R'' = resistance
|-
| Shunt resistor
| align="center" |<math>\begin{bmatrix} 1 & 0 \\ -\frac{1}{R} & 1 \end{bmatrix} </math>
| ''R'' = resistance
|-
| Series conductor
| align="center" |<math>\begin{bmatrix} 1 & -\frac{1}{G} \\ 0 & 1 \end{bmatrix} </math>
| ''G'' = conductance
|-
| Shunt conductor
| align="center" |<math>\begin{bmatrix} 1 & 0 \\ -G & 1 \end{bmatrix} </math>
| ''G'' = conductance
|-
| Series inductor
| align="center" |<math>\begin{bmatrix} 1 & -sL \\ 0 & 1 \end{bmatrix} </math>
| ''L'' = inductance<br/> ''s'' = complex angular frequency
|-
| Shunt capacitor
| align="center" |<math>\begin{bmatrix} 1 & 0 \\ -sC & 1 \end{bmatrix} </math>
| ''C'' = capacitance<br/>''s'' = complex angular frequency
|-
| Transmission Line
| align="center" |<math>\begin{bmatrix} \cosh\left(\gamma l\right) & Z_0 \sinh\left(\gamma l\right) \\ \frac{1}{Z_0} \sinh\left(\gamma l\right) & \cosh\left(\gamma l\right) \end{bmatrix} </math>
| {{math|''Z''<sub>0</sub>}} = [[Characteristic impedance]]<br/>{{math|''γ''}} = [[Propagation constant]]<br/>{{math|''l''}} = Length of transmission line (m)
|}
 
==Scattering parameters (S-parameters)==
{{main|Scattering parameters}}
[[File:two-port S-parameters.svg|thumb|right|'''Fig. 17.''' Terminology of waves used in ''S''-parameter definition.]]
The previous parameters are all defined in terms of voltages and currents at ports.  ''S''-parameters are different, and are defined in terms of incident and [[Signal reflection|reflected waves]] at ports.  ''S''-parameters are used primarily at [[UHF]] and [[microwave]] frequencies where it becomes difficult to measure voltages and currents directly.  On the other hand, incident and reflected power are easy to measure using [[directional coupler]]s.  The definition is,<ref name=Vas137>Vasileska & Goodnick, p.137</ref>
 
:<math> \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} </math>
 
where the <math>\scriptstyle a_k</math> are the incident waves and the <math>\scriptstyle b_k</math> are the reflected waves at port ''k''.  It is conventional to define the <math>\scriptstyle a_k</math> and <math>\scriptstyle b_k</math> in terms of the square root of power. Consequently, there is a relationship with the wave voltages (see main article for details).<ref>Egan, pp.11-12</ref>
 
For reciprocal networks <math>\textstyle S_{12} = S_{21}</math>.  For symmetrical networks <math>\textstyle S_{11} = S_{22}</math>.  For antimetrical networks <math>\textstyle S_{11} = -S_{22}</math>.<ref>Carlin, p.304</ref>  For lossless reciprocal networks <math>\textstyle |S_{11}| = |S_{22}|</math> and <math>\textstyle |S_{11}|^2 + |S_{12}|^2 = 1</math>.<ref>Matthaei et al, p.44.</ref>
 
==Scattering transfer parameters (T-parameters)==
{{See also|Scattering transfer parameters}}
Scattering transfer parameters, like scattering parameters, are defined in terms of incident and reflected waves.  The difference is that ''T''-parameters relate the waves at port 1 to the waves at port 2 whereas ''S''-parameters relate the reflected waves to the incident waves.  In this respect ''T''-parameters fill the same role as ''ABCD'' parameters and allow the ''T''-parameters of cascaded networks to be calculated by matrix multiplication of the component networks.  ''T''-parameters, like ''ABCD'' parameters, can also be called transmission parameters.  The definition is,<ref name=Vas137/><ref>Egan, pp.12-15</ref> 
 
:<math> \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \begin{bmatrix} b_2 \\ a_2 \end{bmatrix} </math>
 
''T''-parameters are not so easy to measure directly unlike ''S''-parameters.  However, ''S''-parameters are easily converted to ''T''-parameters, see main article for details.<ref>Egan, pp.13-14</ref>
 
==Combinations of two-port networks==
When two or more two-port networks are connected, the two-port parameters of the combined network can be found by performing matrix algebra on the matrices of parameters for the component two-ports.  The matrix operation can be made particularly simple with an appropriate choice of two-port parameters to match the form of connection of the two-ports.  For instance, the z-parameters are best for series connected ports.
 
The combination rules need to be applied with care.  Some connections (when dissimilar potentials are joined) result in the port condition being invalidated and the combination rule will no longer apply.  This difficulty can be overcome by placing 1:1 ideal transformers on the outputs of the problem two-ports. This does not change the parameters of the two-ports, but does ensure that they will continue to meet the port condition when interconnected.  An example of this problem is shown for series-series connections in figures 11 and 12 below.<ref name=Farago1227>Farago, pp.122-127.</ref>
 
===Series-series connection===
[[File:two-port series-series.svg|thumb|'''Fig. 10.''' Two two-port networks with input ports connected in series and output ports connected in series.]]
When two-ports are connected in a series-series configuration as shown in figure 10, the best choice of two-port parameter is the ''z''-parameters.  The ''z''-parameters of the combined network are found by matrix addition of the two individual ''z''-parameter matrices.<ref>Ghosh, p.371.</ref><ref>Farago, p.128.</ref>
 
:<math>\lbrack\mathbf z\rbrack = \lbrack\mathbf z\rbrack_1 + \lbrack\mathbf z\rbrack_2</math>
 
[[File:two-port series-series improper.svg|thumb|left|'''Fig. 11.''' Example of an improper connection of two-ports. ''R<sub>1</sub>'' of the lower two-port has been by-passed by a short circuit.]]
[[File:two-port series-series proper.svg|thumb|'''Fig. 12.''' Use of ideal transformers to restore the port condition to interconnected networks.]]
As mentioned above, there are some networks which will not yield directly to this analysis.<ref name=Farago1227/>  A simple example is a two-port consisting of a L-network of resistors ''R''<sub>1</sub> and ''R''<sub>2</sub>.  The ''z''-parameters for this network are;
 
:<math>\lbrack\mathbf z\rbrack_1 = \begin{bmatrix} R_1 + R_2 & R_2 \\ R_2 & R_2 \end{bmatrix}</math>
 
Figure 11 shows two identical such networks connected in series-series.  The total ''z''-parameters predicted by matrix addition are;
 
:<math>\lbrack\mathbf z\rbrack = \lbrack\mathbf z\rbrack_1 + \lbrack\mathbf z\rbrack_2 = 2\lbrack\mathbf z\rbrack_1 = \begin{bmatrix} 2R_1 + 2R_2 & 2R_2 \\ 2R_2 & 2R_2 \end{bmatrix}</math>
 
However, direct analysis of the combined circuit shows that,
 
:<math>\lbrack\mathbf z\rbrack = \begin{bmatrix} R_1 + 2R_2 & 2R_2 \\ 2R_2 & 2R_2 \end{bmatrix}</math>
 
The discrepancy is explained by observing that ''R''<sub>1</sub> of the lower two-port has been by-passed by the short-circuit between two terminals of the output ports. This results in no current flowing through one terminal in each of the input ports of the two individual networks.  Consequently, the port condition is broken for both the input ports of the original networks since current is still able to flow into the other terminal.  This problem can be resolved by inserting an ideal transformer in the output port of at least one of the two-port networks.  While this is a common text-book approach to presenting the theory of two-ports, the practicality of using transformers is a matter to be decided for each individual design.
 
===Parallel-parallel connection===
[[File:two-port parallel-parallel.svg|thumb|right|'''Fig. 13.''' Two two-port networks with input ports connected in parallel and output ports connected in parallel.]]
When two-ports are connected in a parallel-parallel configuration as shown in figure 13, the best choice of two-port parameter is the ''y''-parameters. The ''y''-parameters of the combined network are found by matrix addition of the two individual ''y''-parameter matrices.<ref>Ghosh, p.372.</ref>
 
:<math>\lbrack\mathbf y\rbrack = \lbrack\mathbf y\rbrack_1 + \lbrack\mathbf y\rbrack_2</math>
 
===Series-parallel connection===
[[File:two-port series-parallel.svg|thumb|left|'''Fig. 14.''' Two two-port networks with input ports connected in series and output ports connected in parallel.]]
When two-ports are connected in a series-parallel configuration as shown in figure 14, the best choice of two-port parameter is the ''h''-parameters.  The ''h''-parameters of the combined network are found by matrix addition of the two individual ''h''-parameter matrices.<ref>Ghosh, p.373.</ref>
 
:<math>\lbrack\mathbf h\rbrack = \lbrack\mathbf h\rbrack_1 + \lbrack\mathbf h\rbrack_2</math>
 
===Parallel-series connection===
[[File:two-port parallel-series.svg|thumb|'''Fig. 15.''' Two two-port networks with input ports connected in parallel and output ports connected in series.]]
When two-ports are connected in a parallel-series configuration as shown in figure 15, the best choice of two-port parameter is the ''g''-parameters.  The ''g''-parameters of the combined network are found by matrix addition of the two individual ''g''-parameter matrices.
 
:<math>\lbrack\mathbf g\rbrack = \lbrack\mathbf g\rbrack_1 + \lbrack\mathbf g\rbrack_2</math>
 
===Cascade connection===
[[File:two-port cascade.svg|thumb|left|'''Fig. 16.''' Two two-port networks with the first's output port connected to the second's input port]]
When two-ports are connected with the output port of the first connected to the input port of the second (a cascade connection) as shown in figure 16, the best choice of two-port parameter is the ''ABCD''-parameters.  The ''a''-parameters of the combined network are found by matrix multiplication of the two individual ''a''-parameter matrices.<ref>Farago, pp.128-134.</ref>
 
:<math>\lbrack\mathbf a\rbrack = \lbrack\mathbf a\rbrack_1 \cdot \lbrack\mathbf a\rbrack_2</math>
 
A chain of ''n'' two-ports may be combined by matrix multiplication of the ''n'' matrices.  To combine a cascade of ''b''-parameter matrices, they are again multiplied, but the multiplication must be carried out in reverse order, so that;
 
:<math>\lbrack\mathbf b\rbrack = \lbrack\mathbf b\rbrack_2 \cdot \lbrack\mathbf b\rbrack_1</math>
 
====Example====
 
Suppose we have a two-port network consisting of a series resistor ''R'' followed by a shunt capacitor ''C''.  We can model the entire network as a cascade of two simpler networks:
 
:<math>\begin{align}[]
  \left\lbrack\mathbf{b}\right\rbrack_1 &= \begin{bmatrix} 1 & -R \\  0 & 1 \end{bmatrix}\\
  \left\lbrack\mathbf{b}\right\rbrack_2 &= \begin{bmatrix} 1 &  0 \\ -sC & 1 \end{bmatrix}
\end{align}</math>
 
The transmission matrix for the entire network <math>\scriptstyle \lbrack\mathbf b\rbrack</math> is simply the matrix multiplication of the transmission matrices for the two network elements:
 
:<math>\begin{align}[]
  \lbrack\mathbf{b}\rbrack &= \lbrack\mathbf{b}\rbrack_2 \cdot \lbrack\mathbf{b}\rbrack_1 \\
                          &= \begin{bmatrix} 1 &  0 \\ -sC & 1      \end{bmatrix} \begin{bmatrix} 1 & -R \\ 0 & 1 \end{bmatrix} \\
                          &= \begin{bmatrix} 1 & -R \\ -sC & 1 + sCR \end{bmatrix}
\end{align}</math>
 
Thus:
 
:<math> \begin{bmatrix} V_2 \\ I'_2 \end{bmatrix} = \begin{bmatrix} 1 & -R \\ -sC & 1 + sCR \end{bmatrix} \begin{bmatrix} V_1 \\ I_1 \end{bmatrix}</math>
 
==Interrelation of parameters==
 
{| cellpadding="20" cellspacing="0" border="1" style="text-align:center"
|-
| &nbsp;
| <math>\mathbf{[z]}</math>
| <math>\mathbf{[y]}</math>
| <math>\mathbf{[h]}</math>
| <math>\mathbf{[g]}</math>
| <math>\mathbf{[a]}</math>
| <math>\mathbf{[b]}</math>
|-
| <math>\mathbf{[z]}</math>
| <math>\begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{y_{22}}{\Delta \mathbf{[y]}} & \dfrac{-y_{12}}{\Delta \mathbf{]y]}} \\ \dfrac{-y_{21}}{\Delta \mathbf{[y]}} & \dfrac{y_{11}}{\Delta \mathbf{[y]}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{\Delta \mathbf{[h]}}{h_{22}} & \dfrac{h_{12}}{h_{22}} \\ \dfrac{-h_{21}}{h_{22}} & \dfrac{1}{h_{22}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{1}{g_{11}} & \dfrac{-g_{12}}{g_{11}} \\ \dfrac{g_{21}}{g_{11}} & \dfrac{\Delta \mathbf{[g]}}{g_{11}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{a_{11}}{a_{21}} & \dfrac{\Delta \mathbf{[a]}}{a_{21}} \\ \dfrac{1}{a_{21}} & \dfrac{a_{22}}{a_{21}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{-b_{22}}{b_{21}} & \dfrac{-1}{b_{21}} \\ \dfrac{- \Delta \mathbf{[b]}}{b_{21}} & \dfrac{-b_{11}}{b_{21}} \end{bmatrix}</math>
|-
| <math>\mathbf{[y]}</math>
| <math>\begin{bmatrix} \dfrac{z_{22}}{\Delta \mathbf{[z]}} & \dfrac{-z_{12}}{\Delta \mathbf{[z]}} \\ \dfrac{-z_{21}}{\Delta \mathbf{[z]}} & \dfrac{z_{11}}{\Delta \mathbf{z}} \end{bmatrix}</math>
| <math>\begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{1}{h_{11}} & \dfrac{-h_{12}}{h_{11}} \\ \dfrac{h_{21}}{h_{11}} & \dfrac{\Delta \mathbf{[h]}}{h_{11}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{\Delta \mathbf{[g]}}{g_{22}} & \dfrac{g_{12}}{g_{22}} \\ \dfrac{-g_{21}}{g_{22}} & \dfrac{1}{g_{22}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{a_{22}}{a_{12}} & \dfrac{-\Delta \mathbf{[a]}}{a_{12}} \\ \dfrac{-1}{a_{12}} & \dfrac{a_{11}}{a_{12}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{-b_{11}}{b_{12}} & \dfrac{1}{b_{12}} \\ \dfrac{\Delta \mathbf{[b]}}{b_{12}} & \dfrac{-b_{22}}{b_{12}} \end{bmatrix}</math>
|-
| <math>\mathbf{[h]}</math>
| <math>\begin{bmatrix} \dfrac{\Delta \mathbf{[z]}}{z_{22}} & \dfrac{z_{12}}{z_{22}} \\ \dfrac{-z_{21}}{z_{22}} & \dfrac{1}{z_{22}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{1}{y_{11}} & \dfrac{-y_{12}}{Y_{11}} \\ \dfrac{y_{21}}{y_{11}} & \dfrac{\Delta \mathbf{[y]}}{y_{11}} \end{bmatrix}</math>
| <math>\begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{g_{22}}{\Delta \mathbf{[g]}} & \dfrac{-g_{12}}{\Delta \mathbf{[g]}} \\ \dfrac{-g_{21}}{\Delta \mathbf{[g]}} & \dfrac{g_{11}}{\Delta \mathbf{[g]}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{a_{12}}{a_{22}} & \dfrac{\Delta \mathbf{[a]}}{a_{22}} \\ \dfrac{-1}{a_{22}} & \dfrac{a_{21}}{a_{22}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{-b_{12}}{b_{11}} & \dfrac{1}{b_{11}} \\ \dfrac{-\Delta \mathbf{[b]}}{b_{11}} & \dfrac{-b_{21}}{b_{11}} \end{bmatrix}</math>
|-
| <math>\mathbf{[g]}</math>
| <math>\begin{bmatrix} \dfrac{1}{z_{11}} & \dfrac{-z_{12}}{z_{11}} \\ \dfrac{z_{21}}{z_{11}} & \dfrac{\Delta \mathbf{[z]}}{z_{11}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{\Delta \mathbf{[y]}}{y_{22}} & \dfrac{y_{12}}{y_{22}} \\ \dfrac{-y_{21}}{y_{22}} & \dfrac{1}{y_{22}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{h_{22}}{\Delta \mathbf{[h]}} & \dfrac{-h_{12}}{\Delta \mathbf{[h]}} \\ \dfrac{-h_{21}}{\Delta \mathbf{[h]}} & \dfrac{h_{11}}{\Delta \mathbf{[h]}} \end{bmatrix}</math>
| <math>\begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{a_{21}}{a_{11}} & \dfrac{-\Delta \mathbf{[a]}}{a_{11}} \\ \dfrac{1}{a_{11}} & \dfrac{a_{12}}{a_{11}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{-b_{21}}{b_{22}} & \dfrac{-1}{b_{22}} \\ \dfrac{\Delta \mathbf{[b]}}{b_{22}} & \dfrac{-b_{12}}{b_{22}} \end{bmatrix}</math>
|-
| <math>\mathbf{[a]}</math>
| <math>\begin{bmatrix} \dfrac{z_{11}}{z_{21}} & \dfrac{\Delta \mathbf{[z]}}{z_{21}} \\ \dfrac{1}{z_{21}} & \dfrac{z_{22}}{z_{21}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{-y_{22}}{y_{21}} & \dfrac{-1}{y_{21}} \\ \dfrac{-\Delta \mathbf{[y]}}{y_{21}} & \dfrac{-y_{11}}{y_{21}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{-\Delta \mathbf{[h]}}{h_{21}} & \dfrac{-h_{11}}{h_{21}} \\ \dfrac{-h_{22}}{h_{21}} & \dfrac{-1}{h_{21}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{1}{g_{21}} & \dfrac{g_{22}}{g_{21}} \\ \dfrac{g_{11}}{g_{21}} & \dfrac{\Delta \mathbf{[g]}}{g_{21}} \end{bmatrix}</math>
| <math>\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{b_{22}}{\Delta \mathbf{[b]}} & \dfrac{-b_{12}}{\Delta \mathbf{[b]}} \\ \dfrac{-b_{21}}{\Delta \mathbf{[b]}} & \dfrac{b_{11}}{\Delta \mathbf{[b]}} \end{bmatrix}</math>
|-
| <math>\mathbf{[b]}</math>
| <math>\begin{bmatrix} \dfrac{z_{22}}{z_{12}} & \dfrac{- \Delta \mathbf{[z]}}{z_{12}} \\ \dfrac{-1}{z_{12}} & \dfrac{z_{11}}{z_{12}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{-y_{11}}{y_{12}} & \dfrac{1}{y_{12}} \\ \dfrac{\Delta \mathbf{[y]}}{y_{12}} & \dfrac{-y_{22}}{y_{12}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{1}{h_{12}} & \dfrac{-h_{11}}{h_{12}} \\ \dfrac{-h_{22}}{h_{12}} & \dfrac{\Delta \mathbf{[h]}}{h_{12}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{-\Delta \mathbf{[g]}}{g_{12}} & \dfrac{g_{22}}{g_{12}} \\ \dfrac{g_{11}}{g_{12}} & \dfrac{-1}{g_{12}} \end{bmatrix}</math>
| <math>\begin{bmatrix} \dfrac{a_{22}}{\Delta \mathbf{[a]}} & \dfrac{-a_{12}}{\Delta \mathbf{[a]}} \\ \dfrac{-a_{21}}{\Delta \mathbf{[a]}} & \dfrac{a_{11}}{\Delta \mathbf{[a]}} \end{bmatrix}</math>
| <math>\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}</math>
|}
 
Where <math> \Delta \mathbf{[x]} </math> is the [[determinant]] of ['''x'''].
 
Certain pairs of matrices have a particularly simple relationship.  The admittance parameters are the [[matrix inverse]] of the impedance parameters, the inverse hybrid parameters are the matrix inverse of the hybrid parameters, and the ['''b'''] form of the ABCD-parameters is the matrix inverse of the ['''a'''] form.  That is,
 
:<math>\lbrack\mathbf y\rbrack = \lbrack\mathbf z\rbrack^{-1}</math>
:<math>\lbrack\mathbf g\rbrack = \lbrack\mathbf h\rbrack^{-1}</math>
:<math>\lbrack\mathbf b\rbrack = \lbrack\mathbf a\rbrack^{-1}</math>
 
==Networks with more than two ports==
 
While two port networks are very common (e.g., amplifiers and filters), other electrical networks such as directional couplers and [[circulators]] have more than 2 ports.  The following representations are also applicable to networks with an arbitrary number of ports:
 
*[[Admittance parameters|Admittance (''y'') parameters]]
*[[Impedance parameters|Impedance (''z'') parameters]]
*[[Scattering parameters|Scattering (''S'') parameters]]
 
For example three-port impedance parameters result in the following relationship:
 
:<math> \begin{bmatrix} V_1 \\ V_2 \\V_3 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} & Z_{13} \\ Z_{21} & Z_{22} &Z_{23} \\ Z_{31} & Z_{32} & Z_{33} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\I_3 \end{bmatrix} </math>
 
However the following representations are necessarily limited to two-port devices:
 
*Hybrid (''h'') parameters
*Inverse hybrid (''g'') parameters
*Transmission (''ABCD'') parameters
*Scattering transfer (''T'') parameters
 
==Collapsing a two-port to a one port==
 
A two-port network has four variables with two of them being independent.  If one of the ports is terminated by a load with no independent sources, then the load enforces a relationship between the voltage and current of that port.  A degree of freedom is lost.  The circuit now has only one independent parameter.  The two-port becomes a one-port impedance to the remaining independent variable.
 
For example, consider impedance parameters
 
:<math> \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} </math>
 
Connecting a load,''Z''<sub>L</sub> onto port 2 effectively adds the constraint
:<math> V_2 = -Z_L I_2 \, </math>
 
The negative sign is because the positive direction for I2 is directed into the two-port instead of into the load.  The augmented equations become
 
:<math>\begin{align}
      V_1 &= Z_{11} I_1  +  Z_{12} I_2 \\
  -Z_L I_2 &= Z_{21} I_1  +  Z_{22} I_2
\end{align}</math>
 
The second equation can be easily solved for ''I''<sub>2</sub> as a function of ''I''<sub>1</sub> and that expression can replace ''I''<sub>2</sub>  in the first equation  leaving ''V''<sub>1</sub> ( and ''V''<sub>2</sub> and ''I''<sub>2</sub> ) as functions of ''I''<sub>1</sub>
 
:<math>\begin{align}
  I_2 &= -\frac{Z_{21}}{Z_L + Z_{22}} I_1 \\
  V_1 &= Z_{11} I_1 - \frac{Z_{12} Z_{21}}{Z_L + Z_{22}} I_1 \\
      &= \left(Z_{11} - \frac{Z_{12} Z_{21}}{Z_L + Z_{22}}\right) I_1 = Z_\mathrm{in} I_1
\end{align}</math>
 
So, in effect, ''I''<sub>1</sub> sees an input impedance <math> Z_\mathrm{in} \, </math> and the two-port's effect on the input circuit has been effectively collapsed down to a one-port; i.e., a simple two terminal impedance.
 
==See also==
*[[Admittance parameters]]
*[[Impedance parameters]]
*[[Scattering parameters]]
*[[Ray transfer matrix]]
*[http://www.dougrice.plus.com/dougnapTheory/index.htm Telephone Hybrids]
 
==Notes==
{{reflist|group=nb}}
 
==References==
{{reflist|3}}
 
==Bibliography==
 
*Carlin, HJ, Civalleri, PP, ''Wideband circuit design'', CRC Press, 1998. ISBN 0-8493-7897-4.
*William F. Egan, ''Practical RF system design'', Wiley-IEEE, 2003 ISBN 0-471-20023-9.
*Farago, PS, ''An Introduction to Linear Network Analysis'', The English Universities Press Ltd, 1961.
*{{cite book
|first1=P.R.
|last1=Gray
|first2=P.J.
|last2=Hurst
|first3=S.H.
|last3=Lewis
|first4=R.G.
|last4=Meyer
|title=Analysis and Design of Analog Integrated Circuits
|year=2001
|edition=4th
|publisher=Wiley
|location=New York
|isbn=0-471-32168-0
|pages=
|nopp=true}}
*Ghosh, Smarajit, ''Network Theory: Analysis and Synthesis'', Prentice Hall of India ISBN 81-203-2638-5.
*{{cite book
|first1=R.C.
|last1=Jaeger
|first2=T.N.
|last2=Blalock
|title=Microelectronic Circuit Design
|year=2006
|edition=3rd
|publisher=McGraw&ndash;Hill
|location=Boston
|isbn=978-0-07-319163-8
|pages=
|nopp=true}}
*Matthaei, Young, Jones, ''Microwave Filters, Impedance-Matching Networks, and Coupling Structures'',  McGraw-Hill, 1964.
*Mahmood Nahvi, Joseph Edminister, ''Schaum's outline of theory and problems of electric circuits'', McGraw-Hill Professional, 2002 ISBN 0-07-139307-2.
*Dragica Vasileska, Stephen Marshall Goodnick, ''Computational electronics'', Morgan & Claypool Publishers, 2006 ISBN 1-59829-056-8.
 
{{DEFAULTSORT:Two-Port Network}}
[[Category:Two-port networks| ]]

Latest revision as of 02:04, 14 March 2014

Luke Bryan is often a celebrity inside the earning plus the vocation expansion initial second to his 3rd hotel album, And , may be the evidence. He burst to the picture in 2013 with his unique combination of downward-property availability, video concert tickets for luke bryan star wonderful appearance and words, is set t within a main way. The new recording Top about the region graph and #2 on the put maps, building it the second highest debut during those times of 2000 for any land musician.

The boy of a , is aware of determination and dedication are important elements when it comes to an effective occupation- . His to start with recording, Continue to be Me, produced the best reaches “All My Buddies Say” and “Country Guy,” when his effort, Doin’ Point, identified the performer-3 directly No. 6 men and ticket resale women: Else Phoning Is actually a Good Issue.”

In the fall of 1999, Concert tours: Luke And that have an outstanding list of , which include Downtown. “It’s almost like you’re receiving a acceptance to visit one stage further, states these artists that had been an element of the Concert toursmore than into a larger sized amount of artists.” It wrapped as the best organized tours in its twenty-season history.

My site luke bryan schedule