Logarithmic form: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
latex to html and consistency of notation
en>Wavelength
inserting 2 hyphens: —> "higher-dimensional" and "Higher-dimensional"—User talk:Wavelength#Hyphenation [to Archive 6]
 
Line 1: Line 1:
{{redirect|Sylvester's problem|the matrix equation|Sylvester equation}}
Butlers försvar kom gällande  essentiell omsättning  döende sekunder bruten spelet att donera  ett 54-femtio två besegra mer  Murray villkorar i  andra omgången från NCAA Tournament på HP Pavilion lördag. Efterföljare på EnergySolutions Arena kommer att behandlas till ett  emellan siffra fem utsäde Butler Bulldogs  akt en frö Syracuse Brandröd när de överväger försvinna platser på torsdag  samman sju: 07 pm EST  en sport  kan märkas på CBS. Sweet 16 odds har Syrakusa -7 mars tokeri vadslagning favoriter kontra Butler tillsammans  totala sitter samman 138.<br><br>
The '''Sylvester–Gallai theorem''' asserts that given a [[finite set|finite]] number of points in the [[Euclidean plane]], either
# all the points are [[Line (geometry)|collinear]]; or
# there is a line which contains exactly two of the points.


This claim was posed as a problem by {{harvs|txt|authorlink=James Joseph Sylvester|first=J. J.|last=Sylvester|year=1893}}.  {{harvs|txt|authorlink=Leroy Milton Kelly|last=Kelly|year=1986}} suggests that Sylvester may have been motivated by a related phenomenon in [[algebraic geometry]], in which the [[inflection point]]s of a [[cubic curve]] in the [[complex projective plane]] form a [[configuration (geometry)|configuration]] of nine points and twelve lines in which each line determined by two of the points contains a third point. The Sylvester–Gallai theorem implies that it is impossible for all nine of these points to have real coordinates. {{harvtxt|Woodall|1893}} claimed to have a short proof, but it was already noted to be incomplete at the time of publication. {{harvs|txt|authorlink=Eberhard Melchior|first=Eberhard|last=Melchior|year=1941}} proved the [[projective duality|projective dual]] of this theorem, (actually, of a slightly stronger result). Unaware of Melchior's proof, {{harvs|txt|authorlink=Paul Erdős|first=Paul|last=Erdős|year=1943}} again stated the conjecture, which was proved first by [[Tibor Gallai]], and soon afterwards by other authors.<ref name=stein44>{{harvtxt|Steinberg|Buck|Grünwald|Steenrod|1944}}; {{harvtxt|Erdős|1982}}.</ref>
denna händelse, deltagaren behövs  ner samt installera gällande kasinomjukvaran schema därnäst framställa ett nytt "verkliga deltagare" konto; kasinon också spörja    vill registrera någon berättigad betalningsmetod. mycket populärt metod för en online casino att appellera nya  att donera nya casino bonus. Påföljande nya krediteras kontot  "gratis pengar". en utbetalning kungen någon $15 gratisgrunka. Ännu en, det  allmänhet ett högsta summa  kan tas ut, säger $50 . Därför att casha ut fullkomligt fria kapital tvungen allmänt spelaren omsätta bonussumman mängd gånger (tjugo gånger saken där ursprungliga insättningen befinner sig  emblematisk siffra). Typiska kvantiteter såsom erbjuds $10 åt $15, offentligt bara tillräckligt pro deltagaren att pröva två spel. Odla,  all genomsnitt tycker favör av inga nya gällande nätet casinobonusar, bara  förutsäga för att erhålla rika gör .<br><br>Spelarna att frequent player points (FPP) kondition till nivån de . När  börjar spela bred pokerborden din bonus kommer att lanseras pö om pö som du bär att övervara. Mer att gör, desto snabbare  låser opp fullgöra din poker nya casinobonus.<br><br>snart all har 5 spelkort, resten bruten däcket  mitt villig skrivbordet samt gestalta börjar. Spelet börjar  medurs spelkort  hans  hennes  vänster av leverantören. Leverantören tar samtliga försvinna  fotografi, därefter går tillbaka försåvitt cirkeln därför att administrera den 2: a, och så framåt. Leverantör-om han spelar normalt erbjuder sig allena .<br><br>n4) kommer att få  preliminär insättning gällande $50 kungen ditt konto. att nå 834  din kommer att hava uppnått den andra $50 Du kan erhålla bonus $50  att tjäna Berusad Tilt faktorer medans du lirar  din absolut fria pengar. prick  faktiskt värt kuttra sju cent.<br><br>online pokerrum erbjuder en första insättning registrera  belöning och somliga  större  andra. Vi samtliga uppskattar gratis pengar korrekt, ? Ifall  online poker och  tjänar någon bonus åstadkommer  hygglig det här. du ej uppbokat ut tar båtnad bruten online poker bonus skänker  ungefär  helt kostnadsfri pengar.<br><br>Jämför bonusar därför [http://www.reddit.com/r/howto/search?q=att+besk%C3%A5da att beskåda] som  dej saken där allra ultimata värdet. Beakta aktsamhet insättning förrätta mängder krävs att skilda extra, besiktiga samt att ni kan förrätta ditt gunstling spel kvalificera. De majoriteten webbplatser ger nya casinobonus förleda , ändock största eventuellt vanligtvis det ultimata. Andra frågor att kontrollera 100% 25 matcher samt minst $500 någon timme blackjack. tjugo-40 förrätta  befinner sig  "normen".<br><br>kommer att assistera beordra förmå att ringa in några finansiella stammar  skuld. bryderi  möter  majoriteten individer ovan läka världen. någon idrott för tillfälle din avgjort ej evig på väg att segra handen. att innehava vunnit en alternativt tvenne lek, tenderar vissa individer att bortse deras monetära kapacitet och göra mer satsningar. För att existera villig  garantera sidan, rekommenderas att anlända  just budget att hålla check villig avta utgifter on-line kasinon.<br><br>Vi är ideligen kritiseras bruten andra plocka dom billigare alternativ. Våra ungdomar är hjärntvättad någon juvenil ålder att beskåda kraften i logotyp namn. Det kommer i retur idén ifall montering standard normer. En hänförande inslag vår värld är varumärket namngivning.<br><br>ninety fem  kan endast stå åter åter Exponera avgiftsfri clown visar. Adventuredome - plantera försåvitt älskar nöjesparker, ett arbetsdag till sidan för att satsa på Adventuredome. Ni kan förvärva ett samtliga bege sig dagskort pro endast $24.<br><br>En annan orsak hurså flera har osäkerheter nya casino webbplatser är eftersom meriter. Ju längre har en kasino stannat företaget tekniken äger hantera möjliga frågor såsom dom majoriteten kasinon vissa att råka. Ju längre ett online casino varit företaget desto  dess som det vart inom kast att kvar branschen inom flera år. Sannolikheter är när en on-line casino överlever icke att långa vanligaste syftet  att dessa kasinon inte är enastående samt begåvad nog stäv behandling itu ins samt outs bruten företaget.<br><br>1 Syftet jag avgudar PartyPoker. När ett insättning bonuskod anropas stäv anmälan när åstadkommer någon delbetalning, flertal lirare äts även tankar gällande att innehava tryta klöver inom poker webbplats att acceptera dem att begynna gripa del inom pro riktiga kapital,  bara att fodra in bonuskod domstol sekund nya casino belöningen borde vanligtvis anges när främst loggar in gällande on-line Online pokerrummet, eller i alla fall en dag arbetsdagen eller postumt saken där etta insättningen ni utför.<br><br>If you are you looking for more information regarding [http://wiki.ucreativa.com/k/mediawiki/index.php/Never_Lose_Your_Nya_Internet_Casino_P%C3%A5_N%C3%A4tet_Again nya online svenska casinon på nätet] look at the web site.
 
A line that contains exactly two of a set of points is known as an ''ordinary line''. There is an [[algorithm]] that finds an ordinary line in a set of ''n'' points in time proportional to [[n log n|''n'' log ''n'']] in the [[worst case analysis|worst case]].<ref name=mukh97>{{harvtxt|Mukhopadhyay|Agrawal|Hosabettu|1997}}; {{harvtxt|Mukhopadhyay|Greene|2007}}.</ref>
 
== Projective and dual versions ==
The question of the existence of an ordinary line can also be posed for points in the real [[projective plane]] RP<sup>2</sup> instead of the [[Euclidean plane]]This provides no additional generality, as any finite set of projective points can be transformed into a Euclidean point set preserving all ordinary lines; but the projective viewpoint allows certain configurations to be described more easily.
 
By [[projective duality]], the existence of an ordinary line in a set of non-collinear points in RP<sup>2</sup> is equivalent to the existence of an ''ordinary point'' in a nontrivial [[arrangement of lines|arrangement]] of finitely many lines. An arrangement is said to be trivial when all its lines pass through a common point, and nontrivial otherwise; an ordinary point is a point that belongs to exactly two lines.
 
==Proofs==
 
===Kelly's proof===
[[Image:Sylvester-Gallai theorem.png|right]]
For a description of Gallai's original proof of the theorem, see e.g. {{harvtxt|Borwein|Moser|1990}}. The proof below is instead due to Kelly.
 
Suppose for contradiction that we have a finite set of points not all collinear but with at least three points on each line. Call it ''S''. Define a connecting line to be a line which contains at least three points in the collection. Let (''P'',''l'') be the point and connecting line that are the smallest positive distance apart among all point-line pairs.
 
By the supposition, the connecting line ''l'' goes through at least three points of ''S'', so dropping a perpendicular from ''P'' to ''l'' there must be at least two points on one side of the perpendicular (one might be exactly on the intersection of the perpendicular with ''l''). Of those two points, call the point closer to the perpendicular ''B'', and the other point ''C''. Draw the line ''m'' connecting ''P'' to ''C''. Then the distance from ''B'' to ''m'' is smaller than the distance from ''P'' to ''l'', contradicting the original definition of ''P'' and ''l''. One way to see this is to notice that the right triangle with hypotenuse ''BC'' is similar to and contained in the right triangle with hypotenuse ''PC''.
 
Thus there cannot be a smallest positive distance between point-line pairs—every point must be distance 0 from every line. In other words, every point must lie on the same line if each connecting line has at least three points.
 
===Melchior's proof===
<!-- [[Melchior's inequality]] redirects here; do not change the section heading without also changing the redirect -->
In 1941 (thus, prior to Erdős publishing the question and Gallai's subsequent proof) Melchior showed that any nontrivial finite arrangement of lines in the projective plane has at least three ordinary points. By duality, this results also says that any finite nontrivial set of points on the plane has at least three ordinary lines.
 
Melchior observed that, for any graph [[graph embedding|embedded]] in RP<sup>2</sup>, the formula ''V''&nbsp;&minus;&nbsp;''E''&nbsp;+&nbsp;''F'' must equal 1, the [[Euler characteristic]] of RP<sup>2</sup>; where ''V'', ''E'', and ''F'', are the number of vertices, edges, and faces of the graph, respectively. Any nontrivial line arrangement on RP<sup>2</sup> defines a graph in which each face is bounded by at least three edges, and each edge bounds two faces; so, [[double counting (proof technique)|double counting]] gives the additional inequality ''F''&nbsp;≤&nbsp;2''E''/3. Using this inequality to eliminate ''F'' from the Euler characteristic leads to the inequality ''E''&nbsp;≤&nbsp;3''V''&nbsp;&minus;&nbsp;3. But if every vertex in the arrangement were the crossing point of three or more lines, then the total number of edges would be at least 3''V'', contradicting this inequality. Therefore, some vertices must be the crossing point of only two lines, and as Melchior's more careful analysis shows, at least three ordinary vertices are needed in order to satisfy the inequality ''E''&nbsp;≤&nbsp;3''V''&nbsp;&minus;&nbsp;3.
 
====Melchior's inequality====
By a similar argument, Melchior was able to prove a more general resultFor every ''k''&nbsp;≥&nbsp;2, let ''t''<sub>''k''</sub> be the number of points to which ''k'' lines are incident. Then
 
:<math>\displaystyle \sum_{k\geq2} (k-3) t_k \leq -3.\,\! </math>
 
Equivalently,
 
:<math>\displaystyle t_2 \geqslant 3 + \sum_{k\geq4} (k-3) t_k.\,\! </math>
 
This is often referred to as '''Melchior's inequality'''.
 
===Coxeter's proof===
{{harvs|txt|authorlink=Harold Scott MacDonald Coxeter|last=Coxeter|first=H. S. M.|year=1969}} gave another proof of the Sylvester–Gallai theorem within [[ordered geometry]], an axiomatization of geometry that includes not only Euclidean geometry but several other related geometries. See {{harvs|txt|last=Pambuccian|year=2009}} for minimal axiom systems inside which the Sylvester–Gallai theorem can be proved.
 
==The number of ordinary lines==
[[Image:Few-ordinary-lines.svg|thumb|360px|The two known examples of point sets with fewer than n/2 ordinary lines.]]
While the Sylvester–Gallai theorem states that an arrangement of points, not all collinear, must determine an ordinary line, it does not say how many must be determined.  
 
Let {{nowrap|''t''<sub>2</sub>(''n'')}} be the minimum number of ordinary lines determined over every set of ''n'' non-collinear points. Melchior's proof showed that {{nowrap|''t''<sub>2</sub>(''n'') ≥ 3.}} {{harvs|txt|author2-link=Paul Erdős|last2=Erdős|last1=de Bruijn|author1-link=Nicolaas Govert de Bruijn|year=1948}} raised the question of whether {{nowrap|''t''<sub>2</sub>(''n'')}} approaches infinity with ''n''. {{harvs|txt|authorlink=Theodore Motzkin|last=Motzkin|first=Theodore|year=1951}} confirmed that it does by proving that <math>t_2\ge\sqrt n</math>{{harvs|txt|authorlink=Gabriel Andrew Dirac|first=Gabriel|last=Dirac|year=1951}} conjectured that <math>t_2\ge\lfloor n/2\rfloor</math>, for all values of ''n'', a conjecture that still stands {{as of|2011|lc=on}}. This is often referred to as the ''Dirac-Motzkin conjecture'', see for example {{harvtxt|Brass|Moser|Pach|2005|p=304}}. {{harvtxt|Kelly|Moser|1958}} proved that ''t''<sub>2</sub>(''n'') ≥ 3''n''/7.
 
[[Image:Boroczky-config-even.svg|thumb|200px|Example of Böröczky's (even) configuration with 10 points determining 5 ordinary lines.]]
Dirac's conjectured lower bound is asymptotically the best possible, since there is a proven matching upper bound {{nowrap|''t''<sub>2</sub>(''n'') ≤ ''n''/2}} for even ''n'' greater than four.<ref name="CM68"/> The construction, due to [[Károly Böröczky]], that achieves this bound consists of the vertices of a regular ''m''-gon in the real [[projective plane]] and another ''m'' points (thus, {{nowrap|1=''n'' = 2''m''}}) on the line at infinity corresponding to each of the directions determined by pairs of vertices; although there are {{nowrap|''m''(''m'' &minus; 1)/2}} pairs, they determine only ''m'' distinct directions. This arrangement has only ''m'' ordinary lines, namely those that connect a vertex ''v'' with the point at infinity corresponding to the line determined by ''v'''s two neighboring vertices. Note that, as with any finite configuration in the real projective plane, this construction can be perturbed so that all points are finite, without changing the number of ordinary lines.
 
For odd ''n'', only two examples are known that match Dirac's lower bound conjecture, that is, with {{nowrap|1=''t''<sub>2</sub>(''n'') = (''n'' &minus; 1)/2.}} One example, by {{harvtxt|Kelly|Moser|1958}}, consists of the vertices, edge midpoints, and centroid of an equilateral triangle; these seven points determine only three ordinary lines. The [[projective configuration|configuration]] in which these three ordinary lines are replaced by a single line cannot be realized in the Euclidean plane, but forms a finite [[projective geometry|projective space]] known as the [[Fano plane]]. Because of this connection, the Kelly–Moser example has also been called the non-Fano configuration.<ref name="ggk00"/> The other counterexample, due to McKee,<ref name="CM68">{{harvtxt|Crowe|McKee|1968}}.</ref> consists of two regular pentagons joined edge-to-edge together with the midpoint of the shared edge and four points on the line at infinity in the [[projective plane]]; these 13 points have among them 6 ordinary lines. Modifications of Böröczky's construction lead to sets of odd numbers of points with <math>3\lfloor n/4\rfloor</math> ordinary lines.<ref name="ps09">{{harvtxt|Pach|Sharir|2009}}</ref>
 
In 2009, Csima and Sawyer {{harvtxt|Csima|Sawyer|1993}} proved that <math>t_2(n)\ge\lceil 6n/13\rceil</math> except when ''n'' is seven. Asymptotically, this formula is already 12/13 ~ 92.3% of the proven ''n''/2 upper bound. The ''n''&nbsp;=&nbsp;7 case is an exception because otherwise the Kelly–Moser construction would be a counterexample; their construction shows that ''t''<sub>2</sub>(7)&nbsp;≤&nbsp;3. However, were the Csima–Sawyer bound valid for ''n''&nbsp;=&nbsp;7, it would claim that ''t''<sub>2</sub>(7)&nbsp;≥&nbsp;4.
 
A closely related result is [[Beck's theorem (geometry)|Beck's theorem]], stating a tradeoff between the number of lines with few points and the number of points on a single line.
 
In August 2012, [[Ben Green (mathematician)|Ben Green]] and [[Terence Tao]] published a paper on [[ArXiv]] in which they (claim to) prove that for all point sets of sufficient size, ''n'' &gt; ''n''<sub>0</sub>, the number of ordinary lines is indeed at least ''n''/2.<ref>{{harvtxt|Green|Tao|2012}}</ref> Furthermore when ''n'' is [[Parity (mathematics)|odd]], the number of ordinary lines is at least 3''n''/4&nbsp;&minus;&nbsp;''C'', for some constant ''C''. Thus, the constructions of Böröczky for even and odd (discussed above) are best possible. These claims are still in the process of [[peer review]].
 
==The number of connecting lines==
As [[Paul Erdős]] observed, the Sylvester–Gallai theorem immediately implies that any set of ''n'' points that are not collinear determines at least ''n'' different lines. As a base case, the result is clearly true for ''n''&nbsp;=&nbsp;3. For any larger value of ''n'', the result can be reduced from ''n'' points to ''n''&nbsp;&minus;&nbsp;1 points, by deleting an ordinary line and one of the two points on it. Thus, it follows by mathematical induction. The example of a near-pencil (a set of ''n''&nbsp;&minus;&nbsp;1 collinear points together with one additional point that is not on the same line as the other points) shows that this bound is tight.<ref name="ps09"/>
 
==Generalizations==
[[File:Hesse configuration.svg|thumb|The [[Hesse configuration]], in which the line through every pair of points contains a third point. The Sylvester–Gallai theorem shows that it cannot be realized by straight lines in the Euclidean plane, but it has a realization in the [[complex projective plane]].]]
The Sylvester–Gallai theorem does not directly apply to sets of infinitely many points or to geometries over finite fields: the set of all points in the plane or the set of all points in a finite geometry is an obvious example of a point set without any ordinary lines.
 
For geometries defined using [[complex number]] or [[quaternion]] coordinates, however, the situation is more complicated. For instance, in the [[complex projective plane]] there exists a [[Configuration (geometry)|configuration]] of nine points, [[Hesse's configuration]] (the inflection points of a cubic curve), in which every line is non-ordinary, violating the Sylvester–Gallai theorem. Such a configuration is known as a [[Sylvester–Gallai configuration]], and it cannot be realized by points and lines of the Euclidean plane. Another way of stating the Sylvester–Gallai theorem is that whenever the points of a Sylvester–Gallai configuration are embedded into a Euclidean space, preserving colinearities, the points must all lie on a single line, and the example of the Hesse configuration shows that this is false for the [[complex projective plane]]. However, {{harvtxt|Kelly|1986}} proved a complex-number analogue of the Sylvester–Gallai theorem: whenever the points of a Sylvester–Gallai configuration are embedded into a complex projective space, the points must all lie in a two-dimensional subspace. Similarly, {{harvtxt|Elkies|Pretorius|Swanepoel|2006}} showed that whenever they are embedded into a space defined over the quaternions, they must lie in a three-dimensional subspace.
 
Every set of points in the plane, and the lines connecting them, may be abstracted as the elements and flats of a rank-3 [[oriented matroid]]. In this context, the result of {{harvtxt|Kelly|Moser|1958}} lower-bounding the number of ordinary lines can be generalized to oriented matroids: every rank-3 oriented matroid with ''n'' elements has at least 3''n''/7 two-point lines, or equivalently every rank-3 [[matroid]] with fewer two-point lines must be non-orientable.<ref>{{harvtxt|Björner|Las Vergnas|Sturmfels|White|1993}}.</ref> A matroid without any two-point lines is called a [[Sylvester matroid]]. Relatedly, the Kelly–Moser configuration with seven points and only three ordinary lines forms one of the [[matroid minor|forbidden minors]] for [[Rota's conjecture|GF(4)-representable matroids]].<ref name="ggk00">{{harvtxt|Geelen|Gerards|Kapoor|2000}}.</ref>
 
==See also==
*[[Sylvester's theorem]] (disambiguation page)
*[[List of topics named after James Joseph Sylvester]]
*The ''[[de Bruijn–Erdős theorem (incidence geometry)|de Bruijn–Erdős theorem]]'', a consequence of this theorem, states that a set of ''n'' noncollinear points determines ''n'' lines.
*[[Orchard-planting problem]]
 
==Notes==
{{reflist|2}}
 
==References==
*{{citation
  | last1 = Björner | first1 = Anders | author1-link = Anders Björner
| last2 = Las Vergnas | first2 = Michel | author2-link = Michel Las Vergnas
  | last3 = Sturmfels | first3 = Bernd | author3-link = Bernd Sturmfels
| last4 = White | first4 = Neil
| last5 = Ziegler | first5 = Günter M. | author5-link = Günter M. Ziegler
  | isbn = 0-521-41836-4
  | location = Cambridge
  | mr = 1226888
  | page = 273
  | publisher = Cambridge University Press
| series = Encyclopedia of Mathematics and its Applications
  | title = Oriented matroids
| volume = 46
| year = 1993}}.
*{{citation | last1 = Borwein | first1 = P. | author1-link = Peter Borwein | last2 = Moser | first2 = W. O. J.| title = A survey of Sylvester's problem and its generalizations| journal = Aequationes Mathematicae | volume = 40 | issue = 1 | year = 1990 | doi = 10.1007/BF02112289 | pages = 111–135}}.
* {{Citation |last1=Brass|first1=Peter|last2=Moser|first2=William|last3=Pach|first3=János|authorlink3=János Pach|title=Research problems in discrete geometry |publisher=Springer |location=Berlin |year=2005 |isbn=0-387-23815-8|ref=harv}}.
*{{citation | last1 = de Bruijn | first1 = N. G. | author1-link = Nicolaas Govert de Bruijn | last2 = Erdős | first2 = P.| author2-link = Paul Erdős| title = A combinatioral &#91;sic&#93; problem | journal = Indagationes Mathematicae | year = 1948 | volume = 10 | pages = 421–423 | url = http://www.renyi.hu/~p_erdos/1948-01.pdf }}.
*{{citation | last=Coxeter | first=H. S. M. | authorlink = Harold Scott MacDonald Coxeter | pages=181–182 | title=Introduction to Geometry | location=New York | publisher=John Wiley & Sons | year=1969 | isbn=0-471-50458-0 }}.
*{{citation | doi = 10.2307/2687957 | last1 = Crowe | first1 = D. W. | last2 = McKee | first2 = T. A.| title = Sylvester's problem on collinear points | journal = [[Mathematics Magazine]] | volume = 41| issue = 1| year = 1968| pages = 30–34| jstor = 2687957}}.
*{{citation| last1 = Csima | first1 = J. | last2 = Sawyer | first2 = E.| title = There exist 6''n''/13 ordinary points| journal = Discrete & Computational Geometry| year = 1993| volume = 9| pages = 187–202| doi = 10.1007/BF02189318}}.
*{{citation| last = Dirac | first = G. | authorlink = Gabriel Andrew Dirac | title = Collinearity properties of sets of points | journal = Quart. J. Math. | year = 1951 | volume = 2 | pages = 221–227 | doi = 10.1093/qmath/2.1.221 }}.
*{{citation
  | last1 = Elkies | first1 = Noam | author1-link = Noam Elkies
  | last2 = Pretorius | first2 = Lou M.
  | last3 = Swanepoel | first3 = Konrad J.
  | arxiv = math/0403023
  | doi = 10.1007/s00454-005-1226-7
| issue = 3
| journal = [[Discrete and Computational Geometry]]
| mr = 2202107
| pages = 361–373
| title = Sylvester-Gallai theorems for complex numbers and quaternions
  | volume = 35
  | year = 2006}}.
*{{citation | last = Erdős | first = P. | authorlink = Paul Erdős | contribution = Problem 4065 | journal = [[American Mathematical Monthly]] | volume = 50 | author2 = Bellman, Richard | issue = 1 | year = 1943 | jstor = 2304011 | pages = 65–66 | author3 = Wall, H. S | doi = 10.2307/2304011 | author4 = Singer, James | author5 = Thébault, V | title = Problems for solution: 4065–4069}}.
*{{citation|first=P.|last=Erdős|authorlink=Paul Erdős|url=http://www.math-inst.hu/~p_erdos/1982-22.pdf|title=Personal reminiscences and remarks on the mathematical work of Tibor Gallai|journal=Combinatorica|volume=2|year=1982|pages=207–212|doi=10.1007/BF02579228|issue=3}}.
*{{citation
  | last1 = Geelen | first1 = J. F. | author1-link = Jim Geelen
  | last2 = Gerards | first2 = A. M. H.
  | last3 = Kapoor | first3 = A.
  | doi = 10.1006/jctb.2000.1963
  | issue = 2
  | journal = [[Journal of Combinatorial Theory]]
  | mr = 1769191
  | pages = 247–299
  | series = Series B
| title = The excluded minors for GF(4)-representable matroids
  | url = http://www.math.uwaterloo.ca/~jfgeelen/publications/gf4.pdf
  | volume = 79
  | year = 2000}}.
*{{citation |last1=Green|first1=Ben|author1-link=Ben Green (mathematician)|last2=Tao|first2=Terence|author2-link=Terence Tao|title=On sets defining few ordinary lines|arxiv=1208.4714|year=2012}}
*{{citation| first = L. M. | last = Kelly|authorlink = Leroy Milton Kelly| title = A resolution of the Sylvester–Gallai problem of J. P. Serre| journal = [[Discrete and Computational Geometry]]| volume = 1| issue = 1| pages = 101–104| doi = 10.1007/BF02187687| year = 1986}}.
*{{citation | last1 = Kelly|first1= L. M.|author1-link=Leroy Milton Kelly|last2= Moser|first2= W. O. J. | title = On the number of ordinary lines determined by ''n'' points | journal = Canad. J. Math. | volume = 10 | year = 1958 | pages = 210–219 | url = http://www.cms.math.ca/cjm/v10/p210 | doi = 10.4153/CJM-1958-024-6}}.
*{{citation|first=E.|last=Melchior|authorlink=Eberhard Melchior|year=1941|title=Über Vielseite der Projektive Ebene|journal=[[Deutsche Mathematik]]|volume=5|pages=461–475}}.
*{{citation | last = Motzkin | first = Th. |authorlink=Theodore Motzkin| title = The lines and planes connecting the points of a finite set | journal = Transactions of the American Mathematical Society. | volume = 70 | issue = 3 | year = 1951 | pages = 451–464 | jstor = 1990609 | doi = 10.2307/1990609 }}.
*{{citation | last1 = Mukhopadhyay | first1 = A. | last2 = Agrawal | first2 = A. | last3 = Hosabettu | first3 = R. M.| title = On the ordinary line problem in computational geometry| journal = Nordic Journal of Computing| volume = 4 | issue = 4| year = 1997| pages = 330–341}}.
*{{citation | last1 = Mukhopadhyay | first1 = A. | last2 = Greene | first2 = E. | contribution = The ordinary line problem revisited | title = Proc. 19th Canadian Conference on Computational Geometry | pages = 61–64 | url = http://cccg.ca/proceedings/2007/03a4.pdf | year = 2007}}.
*{{citation
  | last1 = Pach | first1 = János | author1-link = János Pach
  | last2 = Sharir | first2 = Micha | author2-link = Micha Sharir
  | contribution = Chapter 1. Sylvester–Gallai Problem: The Beginnings of Combinatorial Geometry
  | pages = 1–12
  | publisher = [[American Mathematical Society]]
  | series = Mathematical Surveys and Monographs
  | title = Combinatorial Geometry and Its Algorithmic Applications: The Alcalá Lectures
| volume = 152
| year = 2009}}.
*{{citation | last = Pambuccian | first = V. | title = A reverse analysis of the Sylvester-Gallai theorem |journal = Notre Dame Journal of Formal Logic | volume = 50 | issue = 3 | year = 2009 | pages = 245–260 | url = http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.ndjfl/1257862037 | doi= 10.1215/00294527-2009-010 }}.
*{{citation | last1 = Steinberg | first1 = R. | last2 = Buck | first2 = R. C. | last3 = Grünwald | first3 = T. | author3-link = Tibor Gallai | last4 = Steenrod | first4 = N. E. | title = Three point collinearity  (solution to problem 4065) | journal = [[American Mathematical Monthly]] | volume = 51 | issue = 3 | year = 1944 | pages = 169–171  | jstor = 2303021 | doi = 10.2307/2303021}}.
*{{citation| last = Sylvester | first = J. J. | authorlink = J. J. Sylvester| title = Mathematical question 11851 | journal = Educational Times | volume = 59 | year = 1893 | pages = 98}}.
*{{citation|last=Woodall|first=H. J.|authorlink=H. J. Woodall|title=Item 11851|journal=Educational Times|volume=46|issue=385|page=231|year=1893|url=http://books.google.com/books?id=qtUGAAAAYAAJ&pg=PA98}}.
 
== External links ==
*{{cite web
  | author = Malkevitch, Joseph
  | year = 2003
  | title = A discrete geometrical gem
  | url = http://e-math.ams.org/featurecolumn/archive/sylvester1.html}}
*{{mathworld | title = Ordinary Line | urlname = OrdinaryLine}}
 
{{DEFAULTSORT:Sylvester-Gallai theorem}}
[[Category:Euclidean plane geometry]]
[[Category:Theorems in discrete geometry]]
[[Category:Matroid theory]]
[[Category:Articles containing proofs]]

Latest revision as of 00:29, 12 April 2014

Butlers försvar kom gällande essentiell omsättning döende sekunder bruten spelet att donera ett 54-femtio två besegra mer Murray villkorar i andra omgången från NCAA Tournament på HP Pavilion lördag. Efterföljare på EnergySolutions Arena kommer att behandlas till ett emellan siffra fem utsäde Butler Bulldogs akt en frö Syracuse Brandröd när de överväger försvinna platser på torsdag samman sju: 07 pm EST en sport kan märkas på CBS. Sweet 16 odds har Syrakusa -7 mars tokeri vadslagning favoriter kontra Butler tillsammans totala sitter samman 138.

denna händelse, deltagaren behövs ner samt installera gällande kasinomjukvaran schema därnäst framställa ett nytt "verkliga deltagare" konto; kasinon också spörja vill registrera någon berättigad betalningsmetod. mycket populärt metod för en online casino att appellera nya att donera nya casino bonus. Påföljande nya krediteras kontot "gratis pengar". en utbetalning kungen någon $15 gratisgrunka. Ännu en, det allmänhet ett högsta summa kan tas ut, säger $50 . Därför att casha ut fullkomligt fria kapital tvungen allmänt spelaren omsätta bonussumman mängd gånger (tjugo gånger saken där ursprungliga insättningen befinner sig emblematisk siffra). Typiska kvantiteter såsom erbjuds $10 åt $15, offentligt bara tillräckligt pro deltagaren att pröva två spel. Odla, all genomsnitt tycker favör av inga nya gällande nätet casinobonusar, bara förutsäga för att erhålla rika gör .

Spelarna att frequent player points (FPP) kondition till nivån de . När börjar spela bred pokerborden din bonus kommer att lanseras pö om pö som du bär att övervara. Mer att gör, desto snabbare låser opp fullgöra din poker nya casinobonus.

snart all har 5 spelkort, resten bruten däcket mitt villig skrivbordet samt gestalta börjar. Spelet börjar medurs spelkort hans hennes vänster av leverantören. Leverantören tar samtliga försvinna fotografi, därefter går tillbaka försåvitt cirkeln därför att administrera den 2: a, och så framåt. Leverantör-om han spelar normalt erbjuder sig allena .

n4) kommer att få preliminär insättning gällande $50 kungen ditt konto. att nå 834 din kommer att hava uppnått den andra $50 Du kan erhålla bonus $50 att tjäna Berusad Tilt faktorer medans du lirar din absolut fria pengar. prick faktiskt värt kuttra sju cent.

online pokerrum erbjuder en första insättning registrera belöning och somliga större andra. Vi samtliga uppskattar gratis pengar korrekt,  ? Ifall online poker och tjänar någon bonus åstadkommer hygglig det här. du ej uppbokat ut tar båtnad bruten online poker bonus skänker ungefär helt kostnadsfri pengar.

Jämför bonusar därför att beskåda som dej saken där allra ultimata värdet. Beakta aktsamhet insättning förrätta mängder krävs att skilda extra, besiktiga samt att ni kan förrätta ditt gunstling spel kvalificera. De majoriteten webbplatser ger nya casinobonus förleda , ändock största eventuellt vanligtvis det ultimata. Andra frågor att kontrollera 100% 25 matcher samt minst $500 någon timme blackjack. tjugo-40 förrätta befinner sig "normen".

kommer att assistera beordra förmå att ringa in några finansiella stammar skuld. bryderi möter majoriteten individer ovan läka världen. någon idrott för tillfälle din avgjort ej evig på väg att segra handen. att innehava vunnit en alternativt tvenne lek, tenderar vissa individer att bortse deras monetära kapacitet och göra mer satsningar. För att existera villig garantera sidan, rekommenderas att anlända just budget att hålla check villig avta utgifter on-line kasinon.

Vi är ideligen kritiseras bruten andra plocka dom billigare alternativ. Våra ungdomar är hjärntvättad någon juvenil ålder att beskåda kraften i logotyp namn. Det kommer i retur idén ifall montering standard normer. En hänförande inslag vår värld är varumärket namngivning.

ninety fem kan endast stå åter åter Exponera avgiftsfri clown visar. Adventuredome - plantera försåvitt älskar nöjesparker, ett arbetsdag till sidan för att satsa på Adventuredome. Ni kan förvärva ett samtliga bege sig dagskort pro endast $24.

En annan orsak hurså flera har osäkerheter nya casino webbplatser är eftersom meriter. Ju längre har en kasino stannat företaget tekniken äger hantera möjliga frågor såsom dom majoriteten kasinon vissa att råka. Ju längre ett online casino varit företaget desto dess som det vart inom kast att kvar branschen inom flera år. Sannolikheter är när en on-line casino överlever icke att långa vanligaste syftet att dessa kasinon inte är enastående samt begåvad nog stäv behandling itu ins samt outs bruten företaget.

1 Syftet jag avgudar PartyPoker. När ett insättning bonuskod anropas stäv anmälan när åstadkommer någon delbetalning, flertal lirare äts även tankar gällande att innehava tryta klöver inom poker webbplats att acceptera dem att begynna gripa del inom pro riktiga kapital, bara att fodra in bonuskod domstol sekund nya casino belöningen borde vanligtvis anges när främst loggar in gällande on-line Online pokerrummet, eller i alla fall en dag arbetsdagen eller postumt saken där etta insättningen ni utför.

If you are you looking for more information regarding nya online svenska casinon på nätet look at the web site.