G2 manifold: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Rjwilmsi
m References: Journal cites, added 1 DOI using AWB (9887)
en>Wavelength
inserting 1 hyphen: —> "3- and 4-dimensional"—wikt:2-dimensionalwikt:3-dimensionalwikt:4-dimensionalWP:HYPHEN.3.7 [hanging hyphens]
 
Line 1: Line 1:
{{Distinguish2|other [[integral]]s of [[exponential function]]s}}
I'm Phyllis (24) from Bretigny-Sur-Orge, France. <br>I'm learning Russian literature at a local high school and I'm just about to graduate.<br>I have a part time job in a the office.<br><br>Also visit my page :: [http://juniorszbi.soup.io/post/458172725/Basement-Waterproofing-Basics-You-Need-To-Must basement waterproofing]
[[Image:Exponential integral.svg|300px|right|thumb| Plot of ''E''<sub>1</sub> function (top) and Ei function (bottom).]]
 
In mathematics, the '''exponential integral''' &nbsp;Ei is a [[special function]] on the [[complex plane]].
It is defined as one particular [[definite integral]] of the ratio between an [[exponential function]] and its [[argument of a function|argument]].
 
==Definitions==
For real nonzero values of&nbsp;''x'', the exponential integral&nbsp;Ei(''x'') is defined as
 
:<math> \operatorname{Ei}(x)=-\int_{-x}^{\infty}\frac{e^{-t}}t\,dt.\,</math>
 
The [[Risch algorithm]] shows that Ei is not an [[elementary function]].  The definition above can be used for positive values of&nbsp;''x'', but the integral has to be understood in terms of the [[Cauchy principal value]] due to the singularity of the integrand at zero.
 
For complex values of the argument, the definition becomes ambiguous due to [[branch points]] at 0 and <math>\infty</math>.<ref>Abramowitz and Stegun, p.&nbsp;228</ref> Instead of Ei, the following notation is used,<ref>Abramowitz and Stegun, p.&nbsp;228, 5.1.1</ref>
 
:<math>\mathrm{E}_1(z) = \int_z^\infty \frac{e^{-t}}{t}\,  dt,\qquad|{\rm Arg}(z)|<\pi</math>
 
In general, a [[branch cut]] is taken on the negative real axis and E<sub>1</sub> can be defined by [[analytic continuation]] elsewhere on the complex plane.
 
For positive values of the real part of <math>z</math>, this can be written<ref>Abramowitz and Stegun, p.&nbsp;228, 5.1.4 with ''n''&nbsp;=&nbsp;1</ref>
:<math>\mathrm{E}_1(z) = \int_1^\infty \frac{e^{-tz}}{t}\, dt = \int_0^1 \frac{e^{-z/u}}{u}\, du ,\qquad \Re(z) \ge 0.</math>
 
The behaviour of E<sub>1</sub> near the branch cut can be seen by the following relation:<ref>Abramowitz and Stegun, p.&nbsp;228, 5.1.7</ref>
 
:<math>\lim_{\delta\to0+}\mathrm{E_1}(-x \pm i\delta) = -\mathrm{Ei}(x) \mp i\pi,\qquad x>0,</math>
 
==Properties==
Several properties of the exponential integral below, in certain cases, allow one to avoid its explicit evaluation through the definition above.
 
===Convergent series===
 
Integrating the [[Taylor series]] for <math>e^{-t}/t</math>, and extracting the logarithmic singularity, we can derive the following series representation for <math>\mathrm{E_1}(x)</math> for real <math>x</math>:<ref>For a derivation, see Bender and Orszag, p253</ref>
 
:<math>\mathrm{Ei}(x) = \gamma+\ln |x| + \sum_{k=1}^{\infty} \frac{x^k}{k\; k!} \qquad x \neq 0</math>
 
For complex arguments off the negative real axis, this generalises to<ref>Abramowitz and Stegun, p.&nbsp;229, 5.1.11</ref>
 
:<math>\mathrm{E_1}(z) =-\gamma-\ln z-\sum_{k=1}^{\infty}\frac{(-z)^k}{k\; k!} \qquad (|\mathrm{Arg}(z)| < \pi)</math>
 
where <math>\gamma</math> is the [[Euler–Mascheroni constant]]. The sum converges for all complex <math>z</math>, and we take the usual value of the [[complex logarithm]] having a [[branch cut]] along the negative real axis.
 
This formula can be used to compute <math>\mathrm{E_1}(x)</math> with floating point operations for real <math>x</math> between 0 and 2.5. For <math>x > 2.5</math>, the result is inaccurate due to [[loss of significance|cancellation]].
 
A faster converging series was found by  [[Ramanujan]]:
 
:<math>{\rm Ei} (x) = \gamma + \ln x + \exp{(x/2)} \sum_{n=1}^\infty \frac{ (-1)^{n-1} x^n} {n! \, 2^{n-1}} \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{1}{2k+1}</math>
 
===Asymptotic (divergent) series===
[[Image:AsymptoticExpansionE1.png|right|200px|thumb| Relative error of the asymptotic approximation for different number <math>~N~</math> of terms in the truncated sum]]
 
Unfortunately, the convergence of the series above is slow for arguments of larger modulus. For example, for x=10 more than 40 terms are required to get an answer correct to three significant figures.<ref>Bleistein and Handelsman, p.&nbsp;2</ref> However, there is a divergent series approximation that can be obtained by integrating <math>ze^z\mathrm{E_1}(z)</math> by parts:<ref>Bleistein and Handelsman, p.&nbsp;3</ref>
:<math>
\mathrm{E_1}(z)=\frac{\exp(-z)}{z}\sum_{n=0}^{N-1} \frac{n!}{(-z)^n}
</math>
which has error of order <math>O(N!z^{-N})</math> and is valid for large values of <math>\mathrm{Re}(z)</math>. The relative error of the approximation above is plotted on the figure to the right for various values of <math>N</math>, the number of terms in the truncated sum (<math>N=1</math> in red, <math>N=5</math> in pink).
 
===Exponential and logarithmic behavior: bracketing===
[[Image:BracketingE1.png|right|200px|thumb|Bracketing of <math>\mathrm{E_1}</math> by elementary functions]]
 
From the two series suggested in previous subsections, it follows that <math>\mathrm{E_1}</math> behaves like a negative exponential for large values of the argument and like a logarithm for small values. For positive real values of the argument, <math>\mathrm{E_1}</math> can be bracketed by elementary functions as follows:<ref>Abramowitz and Stegun, p.&nbsp;229, 5.1.20</ref>
:<math>
\frac{1}{2}e^{-x}\,\ln\!\left( 1+\frac{2}{x} \right)
< \mathrm{E_1}(x) <
e^{-x}\,\ln\!\left( 1+\frac{1}{x} \right)
\qquad x>0
</math>
 
The left-hand side of this inequality is shown in the graph to the left in blue; the central part <math>\mathrm{E_1}(x)</math> is shown in black and the right-hand side is shown in red.
 
===Definition by <math>\mathrm{Ein}</math>===
 
Both <math>\mathrm{Ei}</math> and <math>\mathrm{E_1}</math> can be written more simply using the [[entire function]] <math>\mathrm{Ein}</math><ref>Abramowitz and Stegun, p.&nbsp;228, see footnote 3.</ref> defined as
:<math>
\mathrm{Ein}(z)
= \int_0^z (1-e^{-t})\frac{dt}{t}
= \sum_{k=1}^\infty \frac{(-1)^{k+1}z^k}{k\; k!}
</math>
(note that this is just the alternating series in the above definition of <math>\mathrm{E_1}</math>). Then we have
:<math>
\mathrm{E_1}(z) \,=\, -\gamma-\ln z + {\rm Ein}(z)
\qquad |\mathrm{Arg}(z)| < \pi
</math>
:<math>\mathrm{Ei}(x) \,=\, \gamma+\ln x - \mathrm{Ein}(-x)
\qquad x>0
</math>
 
===Relation with other functions===
 
The exponential integral is closely related to the [[logarithmic integral function]] li(''x'') by the formula
:<math>
\mathrm{li}(x) = \mathrm{Ei}(\ln x)\,
</math>
for positive real values of <math>x</math>
 
The exponential integral may also be generalized to
 
:<math>{\rm E}_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n}\, dt,</math>
 
which can be written as a special case of the [[incomplete gamma function]]:<ref>Abramowitz and Stegun, p.&nbsp;230, 5.1.45</ref>
 
: <math>{\rm E}_n(x) =x^{n-1}\Gamma(1-n,x).\,</math>
 
The generalized form is sometimes called the Misra function<ref>After Misra (1940), p.&nbsp;178</ref> <math>\varphi_m(x)</math>, defined as
 
:<math>\varphi_m(x)={\rm E}_{-m}(x).\,</math>
 
Including a logarithm defines the generalized integro-exponential function<ref>Milgram (1985)</ref>
:<math>E_s^j(z)= \frac{1}{\Gamma(j+1)}\int_1^\infty (\log t)^j \frac{e^{-zt}}{t^s}\,dt</math>.
 
The indefinite integral:
:<math> \mathrm{Ei}(a \cdot b) = \iint e^{a b} \, da \, db</math>
is similar in form to the ordinary [[generating function]] for <math>d(n)</math>, the number of [[divisors]] of <math>n</math>:
:<math> \sum\limits_{n=1}^{\infty} d(n)x^{n} = \sum\limits_{a=1}^{\infty} \sum\limits_{b=1}^{\infty} x^{a b}</math>
 
===Derivatives===
 
The derivatives of the generalised functions <math>\mathrm{E_n}</math> can be calculated by means of the formula <ref>Abramowitz and Stegun, p.&nbsp;230, 5.1.26</ref>
:<math>
\mathrm{E_n}'(z) = -\mathrm{E_{n-1}}(z)
\qquad (n=1,2,3,\ldots)
</math>
Note that the function <math>\mathrm{E_0}</math> is easy to evaluate (making this recursion useful), since it is just <math>e^{-z}/z</math>.<ref>Abramowitz and Stegun, p.&nbsp;229, 5.1.24</ref>
 
===Exponential integral of imaginary argument===
 
[[Image:E1ofImaginaryArgument.png|right|200px|thumb|<math>\mathrm{E_1}(ix)</math>
against <math>x</math>; real part black, imaginary part red.]]
 
If <math>z</math> is imaginary, it has a nonnegative real part, so we can use the formula
:<math>
\mathrm{E_1}(z) = \int_1^\infty
\frac{e^{-tz}}{t} dt
</math>
to get a relation with the [[trigonometric integrals]] <math>\mathrm{Si}</math> and <math>\mathrm{Ci}</math>:
:<math>
\mathrm{E_1}(ix) = i\left(-\tfrac{1}{2}\pi + \mathrm{Si}(x)\right) - \mathrm{Ci}(x)
\qquad (x>0)
</math>
The real and imaginary parts of <math>\mathrm{E_1}(x)</math> are plotted in the figure to the right with black and red curves.
 
== Applications ==
* Time-dependent [[heat transfer]]
* Nonequilibrium [[groundwater]] flow in the [[Aquifer test#Transient Theis solution|Theis solution]] (called a ''well function'')
* Radiative transfer in stellar atmospheres
* Radial diffusivity equation for transient or unsteady state flow with line sources and sinks
* Solutions to the [[neutron transport]] equation in simplified 1-D geometries.<ref>{{cite book|title=Nuclear Reactor Theory|year=1970|publisher=Van Nostrand Reinhold Company|author=George I. Bell|coauthors=Samuel Glasstone}}</ref>
 
==Notes==
{{reflist|2}}
 
==References==
* {{cite book
  | last = Abramovitz
  | first = Milton
  | others= [[Abramowitz and Stegun]]
  | coauthors =Irene Stegun
  | title =Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
  | publisher = Dover
  | year = 1964
  | location = New York
  | url = http://www.math.sfu.ca/~cbm/aands
  | isbn = 0-486-61272-4 }}, [http://people.math.sfu.ca/~cbm/aands/page_228.htm Chapter 5].
* {{cite book
  | last = Bender
  | first = Carl M.
  | coauthors = Steven A. Orszag
  | title = Advanced mathematical methods for scientists and engineers
  | publisher = McGraw–Hill
  | year = 1978
  | isbn = 0-07-004452-X
}}
* {{cite book
  | last = Bleistein
  | first = Norman
  | coauthors = Richard A. Handelsman
  | title = Asymptotic Expansions of Integrals
  | publisher = Dover
  | year = 1986
  | isbn = 0-486-65082-0
}}
* {{cite journal
  |doi=10.1093/qmath/1.1.176
  |first=Ida W.
  |last=Busbridge
  |journal=Quart. J. Math. (Oxford)
  |year=1950
  |volume=1
  |issue=1
  |title=On the integro-exponential function and the evaluation of some integrals involving it
  |pages=176–184
  |bibcode=1950QJMat...1..176B
}}
* {{cite journal
|first1=A.
|last1=Stankiewicz
|title=Tables of the integro-exponential functions
|journal=Acta Astronomica
|volume=18
|page=289
|year=1968
|bibcode=1968AcA....18..289S
}}
* {{cite journal
|first1=R. R.
|last1=Sharma
|first2=Bahman
|last2=Zohuri
|title=A general method for an accurate evaluation of exponential integrals E<sub>1</sub>(x), x>0
|journal=J. Comput. Phys.
|volume=25
|number=2
|pages=199&mdash;204
|doi=10.1016/0021-9991(77)90022-5
|year=1977
|bibcode=1977JCoPh..25..199S
}}
* {{cite journal
|doi=10.1090/S0025-5718-1983-0701632-1
|first1=K. S.
|last1=K&ouml;lbig
|title=On the integral exp(&minus;''&mu;t'')''t''<sup>&nu;&minus;1</sup>log<sup>''m''</sup>''t''&nbsp;''dt''
|journal=Math. Comput
|year=1983
|pages=171&mdash;182
|volume=41
|number=163
}}
* {{cite journal
  |doi=10.1090/S0025-5718-1985-0777276-4
  |first=M. S.
  |last=Milgram
  |journal=Mathematics of Computation
  |title=The generalized integro-exponential function
  |volume=44
  |issue=170
  |year=1985
  |mr=0777276
  |pages=443&ndash;458
  |jstor = 2007964
}}
* {{cite journal
| last        = Misra
| first      = Rama Dhar
| year        = 1940
| title      = On the Stability of Crystal Lattices. II
| journal    = Mathematical Proceedings of the Cambridge Philosophical Society
| volume      = 36
| issue      = 2
| pages      = 173
| doi        = 10.1017/S030500410001714X
| last2        = Born
| first2        = M.
|bibcode = 1940PCPS...36..173M }}
* {{cite journal
|first1=C.
|last1=Chiccoli
|first2=S.
|last2=Lorenzutta
|first3=G.
|last3=Maino
|title=On the evaluation of generalized exponential integrals E<sub>&nu;</sub>(x)
|journal=J. Comput. Phys.
|volume=78
|pages=278&mdash;287
|year=1988
|doi=10.1016/0021-9991(88)90050-2
|bibcode=1988JCoPh..78..278C
}}
* {{cite journal
|first1=C.
|last1=Chiccoli
|first2=S.
|last2=Lorenzutta
|first3=G.
|last3=Maino
|title=Recent results for generalized exponential integrals
|journal=Computer Math. Applic.
|volume=19
|number=5
|pages=21&mdash;29
|year=1990
|doi=10.1016/0898-1221(90)90098-5
}}
* {{cite journal
|first1=Allan J.
|last1=MacLeod
|title=The efficient computation of some generalised exponential integrals
|journal=J. Comput. Appl. Math.
|doi=10.1016/S0377-0427(02)00556-3
|year=2002
|volume=148
|number=2
|pages=363&mdash;374
|bibcode=2002JCoAm.138..363M
}}
* {{Citation | last1=Press | first1=WH | last2=Teukolsky | first2=SA | last3=Vetterling | first3=WT | last4=Flannery | first4=BP | year=2007 | title=Numerical Recipes: The Art of Scientific Computing | edition=3rd | publisher=Cambridge University Press |  publication-place=New York | isbn=978-0-521-88068-8 | chapter=Section 6.3. Exponential Integrals | chapter-url=http://apps.nrbook.com/empanel/index.html#pg=266}}
 
*{{dlmf|id=6|title=Exponential, Logarithmic, Sine, and Cosine Integrals|first=N. M. |last=Temme}}
 
== External links ==
* {{springer|title=Integral exponential function|id=p/i051440}}
* [http://dlmf.nist.gov/8.19 NIST documentation on the Generalized Exponential Integral]
*{{MathWorld|urlname=ExponentialIntegral|title=Exponential Integral}}
*{{MathWorld|urlname=En-Function|title=''En''-Function}}
* [http://functions.wolfram.com/GammaBetaErf/ExpIntegralEi/ Formulas and identities for Ei]
 
{{DEFAULTSORT:Exponential Integral}}
[[Category:Exponentials]]
[[Category:Special functions]]
[[Category:Special hypergeometric functions]]
[[Category:Integrals]]

Latest revision as of 16:46, 15 March 2014

I'm Phyllis (24) from Bretigny-Sur-Orge, France.
I'm learning Russian literature at a local high school and I'm just about to graduate.
I have a part time job in a the office.

Also visit my page :: basement waterproofing