Circle of a sphere: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>David Eppstein
on second thought, this should be merged as well
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
An '''artificial neuron''' is a mathematical function conceived as a crude model, or abstraction of biological [[neuron]]s. Artificial neurons are the constitutive units in an [[artificial neural network]].  Depending on the specific model used, it can receive different names, such as '''semi-linear unit''',  '''Nv neuron''', '''binary neuron''', '''linear threshold function''' or '''McCulloch–Pitts (MCP) neuron'''. The artificial neuron receives one or more inputs (representing the one or more [[dendrite]]s) and sums them to produce an output (representing a biological neuron's [[axon]]). Usually the sums of each node are weighted, and the sum is passed through a [[non-linear]] function known as an [[activation function]] or [[transfer function]]. The transfer functions usually have a [[sigmoid function|sigmoid shape]], but they may also take the form of other non-linear functions, [[piecewise]] linear functions, or [[#Step function|step functions]]. They are also often  [[Monotonic function|monotonically increasing]], [[Continuous function|continuous]], [[Differentiable function|differentiable]] and [[Bounded function|bounded]].
Adrianne Swoboda is what her husband loves to give a call her though she neglects to really like being often known as like that. Software developing is what she does but she's always would like her own business. To drive is something which experts state she's been doing not that long ago. Idaho is where her home is normally and she will rarely ever move. Go to her website to seek out more: http://[http://Search.Un.org/search?ie=utf8&site=un_org&output=xml_no_dtd&client=UN_Website_en&num=10&lr=lang_en&proxystylesheet=UN_Website_en&oe=utf8&q=circuspartypanama&Submit=Go circuspartypanama].com<br><br>Feel free to surf to my web blog ... [http://circuspartypanama.com clash of clans hack ipod]
 
The artificial neuron transfer function should not be confused with a linear system's [[transfer function]].
 
== Basic structure ==
For a given artificial neuron, let there be ''m''&nbsp;+&nbsp;1 inputs with signals ''x''<sub>0</sub> through ''x''<sub>''m''</sub> and weights ''w''<sub>0</sub> through ''w''<sub>''m''</sub>. Usually, the ''x''<sub>0</sub> input is assigned the value +1, which makes it a ''bias'' input with ''w''<sub>''k''0</sub>&nbsp;=&nbsp;''b''<sub>''k''</sub>. This leaves only ''m'' actual inputs to the neuron: from ''x''<sub>1</sub> to ''x''<sub>''m''</sub>.
 
The output of ''k''th neuron is:
 
:<math>y_k =  \varphi \left( \sum_{j=0}^m w_{kj} x_j \right)</math>
 
Where <math>\varphi</math> (phi) is the transfer function.
 
[[File:artificial neuron.png]]
 
The output is analogous to the [[axon]] of a biological neuron, and its value propagates to input of the next layer, through a synapse. It may also exit the system, possibly as part of an output vector.
 
It has no learning process as such. Its transfer function weights are calculated and threshold value are predetermined.
 
==Comparison to biological neurons==
Artificial neurons bear a striking similarity to their biological counterparts.
 
*Dendrites - In a biological neuron, the dendrites act as the input vector. These dendrites allow the cell to receive signals from a large (>1000) number of neighboring neurons. As in the above mathematical treatment, each dendrite is able to perform "multiplication" by that dendrite's "weight value." The multiplication is accomplished by increasing or decreasing the ratio of synaptic neurotransmitters to signal chemicals introduced into the dendrite in response to the synaptic neurotransmitter. A negative multiplication effect can be achieved by transmitting signal inhibitors (i.e. oppositely charged ions) along the dendrite in response to the reception of synaptic neurotransmitters.
*Soma - In a biological neuron, the soma acts as the summation function, seen in the above mathematical description. As positive and negative signals (exciting and inhibiting, respectively) arrive in the soma from the dendrites, the positive and negative ions are effectively added in summation, by simple virtue of being mixed together in the solution inside the cell's body.
*Axon - The axon gets its signal from the summation behavior which occurs inside the soma. The opening to the axon essentially samples the electrical potential of the solution inside the soma. Once the soma reaches a certain potential, the axon will transmit an all-in signal pulse down its length. In this regard, the axon behaves as the ability for us to connect our artificial neuron to other artificial neurons.
 
Unlike most artificial neurons, however, biological neurons fire in discrete pulses. Each time the electrical potential inside the soma reaches a certain threshold, a pulse is transmitted down the axon. This pulsing can be translated into continuous values. The rate (activations per second, etc.) at which an axon fires converts directly into the rate at which neighboring cells get signal ions introduced into them. The faster a biological neuron fires, the faster nearby neurons accumulate electrical potential (or lose electrical potential, depending on the "weighting" of the dendrite that connects to the neuron that fired). It is this conversion that allows computer scientists and mathematicians to simulate biological neural networks using artificial neurons which can output distinct values (often from -1 to 1).
 
==History==
The first artificial neuron was the Threshold Logic Unit (TLU) first proposed by [[Warren McCulloch]] and [[Walter Pitts]] in 1943. As a transfer function, it employed a threshold, equivalent to using the [[Heaviside step function]]. Initially, only a simple model was considered, with binary inputs and outputs, some restrictions on the possible weights, and a more flexible threshold value. Since the beginning it was already noticed that any boolean function could be implemented by networks of such devices, what is easily seen from the fact that one can implement the AND and OR functions, and use them in the [[disjunctive normal form|disjunctive]] or the [[conjunctive normal form]].
 
Researchers also soon realized that cyclic networks, with [[feedback]]s through neurons, could define dynamical systems with memory, but most of the research concentrated (and still does) on strictly feed-forward networks because of the smaller difficulty they present.
 
One important and pioneering artificial neural network that used the linear threshold function was the [[perceptron]], developed by [[Frank Rosenblatt]]. This model already considered more flexible weight values in the neurons, and was used in machines with adaptive capabilities. The representation of the threshold values as a bias term was introduced by [[Bernard Widrow]] in 1960{{Citation needed|date=March 2008}}.
 
In the late 1980s, when research on neural networks regained strength, neurons with more continuous shapes started to be considered. The possibility of differentiating the activation function allows the direct use of the [[gradient descent]] and other optimization algorithms for the adjustment of the weights. Neural networks also started to be used as a general function approximation model.<ref>[[Paul J. Werbos]]. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, 1974</ref><ref>Paul J. Werbos. [[Backpropagation]] through time: what it does and how to do it. Proceedings of the IEEE, Volume 78, Issue 10, 1550 - 1560, Oct 1990, doi10.1109/5.58337</ref>
 
==Types of transfer functions==
The transfer function of a neuron is chosen to have a number of properties which either enhance or simplify the network containing the neuron. Crucially, for instance, any [[multilayer perceptron]] using a ''linear'' transfer function has an equivalent single-layer network; a non-linear function is therefore necessary to gain the advantages of a multi-layer network.
 
Below, ''u'' refers in all cases to the weighted sum of all the inputs to the neuron, i.e. for ''n'' inputs,
 
:<math>
u = \sum_{i = 1}^n w_{i} x_{i}
</math>
 
where '''w''' is a vector of ''synaptic weights'' and '''x''' is a vector of inputs.
 
===Step function===
The output ''y'' of this transfer function is binary, depending on whether the input meets a specified threshold, ''θ''. The "signal" is sent, i.e. the output is set to one, if the activation meets the threshold.
 
:<math>y = \left\{ \begin{matrix} 1 & \mbox{if }u \ge \theta \\ 0 & \mbox{if }u < \theta \end{matrix} \right.</math>
 
This function is used in [[perceptron]]s and often shows up in many other models. It performs a division of the [[Vector space|space]] of inputs by a [[hyperplane]]. It is specially useful in the last layer of a network intended to perform binary classification of the inputs. It can be approximated from other sigmoidal functions by assigning large values to the weights.
 
===Linear combination===
In this case, the output unit is simply the weighted sum of its inputs plus a ''bias'' term. A number of such linear neurons perform a linear transformation of the input vector. This is usually more useful in the first layers of a network. A number of analysis tools exist based on linear models, such as [[harmonic analysis]], and they can all be used in neural networks with this linear neuron. The bias term allows us to make [[homogeneous coordinates|affine transformations]] to the data.
 
See: [[Linear transformation]], [[Harmonic analysis]], [[Linear filter]], [[Wavelet]], [[Principal component analysis]], [[Independent component analysis]], [[Deconvolution]].
 
===Sigmoid===
A fairly simple non-linear function, a [[Sigmoid function]] such as the logistic function also has an easily calculated derivative, which can be important when calculating the weight updates in the network. It thus makes the network more easily manipulable mathematically, and was attractive to early computer scientists who needed to minimize the computational load of their simulations. It is commonly seen in [[multilayer perceptron]]s using a [[backpropagation]] algorithm.
 
<!-- This part of the article needs to be expanded -->
 
See: [[Sigmoid function]]
 
==Pseudocode algorithm==
The following is a simple [[pseudocode]] implementation of a single TLU which takes [[Boolean data type|boolean]] inputs (true or false), and returns a single boolean output when activated. An [[object oriented|object-oriented]] model is used. No method of training is defined, since several exist. If a purely functional model were used, the class TLU below would be replaced with a function TLU with input parameters threshold, weights, and inputs that returned a boolean value.
 
  '''class''' TLU '''defined as:'''
  '''data member''' threshold ''':''' number
  '''data member''' weights ''': list of''' numbers '''of size''' X
  '''function member''' fire( inputs ''': list of''' booleans '''of size''' X ) ''':''' boolean '''defined as:'''
    '''variable''' T ''':''' number
    T '''←''' 0
    '''for each''' i '''in''' 1 '''to''' X ''':'''
    '''if''' inputs(i) '''is''' true ''':'''
      T '''←''' T + weights(i)
    '''end if'''
    '''end for each'''
    '''if''' T > threshold ''':'''
    '''return''' true
    '''else:'''
    '''return''' false
    '''end if'''
  '''end function'''
  '''end class'''
 
== Spreadsheet example ==
{| class="wikitable" <hiddentext>generated with [[:de:Wikipedia:Helferlein/VBA-Macro for EXCEL tableconversion]] V1.7<\hiddentext>
|-
| width="47" height="13"  valign="bottom" | 
| width="42"  valign="bottom" | 
| width="37" colspan="3" align="center" valign="bottom" | Input
| width="21" colspan="2" align="center" valign="bottom" | Initial
| width="39" colspan="2" align="center" valign="bottom" | Output
| width="35"  valign="bottom" | 
| width="64"  valign="bottom" | 
| width="38"  valign="bottom" | 
| width="50"  valign="bottom" | 
| width="41" colspan="2" align="center" valign="bottom" | Final
|-
| height="38"  valign="bottom" | Threshold
|  valign="bottom" | Learning Rate
| colspan="2" align="center" valign="bottom" | Sensor values
|  valign="bottom" | Desired output
| colspan="2" align="center" valign="bottom" | Weights
| colspan="2" align="center" valign="bottom" | Calculated
| align="center" valign="bottom" | Sum
| align="center" valign="bottom" | Network
| align="center" valign="bottom" | Error
| align="center" valign="bottom" | Correction
| colspan="2" align="center" valign="bottom" | Weights
|-  align="center" valign="bottom"
| height="13" | TH
| LR
| X1
| X2
| Z
| w1
| w2
| C1
| C2
| S
| N
| E
| R
| W1
| W2
|-  align="center" valign="bottom"
| height="13" | 
| X1 x w1
| X2 x w2
| C1+C2
| IF(S>TH,1,0)
| Z-N
| LR x E
| R+w1
| R+w2
|-  align="center" valign="bottom"
| height="13" | 0.5
| 0.2
| 0
| 0
| 0
| 0.1
| 0.3
| 0
| 0
| 0
| 0
| 0
| 0
| 0.1
| 0.3
|-  align="center" valign="bottom"
| height="13" | 0.5
| 0.2
| 0
| 1
| 1
| 0.1
| 0.3
| 0
| 0.3
| 0.3
| 0
| 1
| 0.2
| 0.3
| 0.5
|-  align="center" valign="bottom"
| height="13" | 0.5
| 0.2
| 1
| 0
| 1
| 0.3
| 0.5
| 0.3
| 0
| 0.3
| 0
| 1
| 0.2
| 0.5
| 0.7
|-  align="center" valign="bottom"
| height="13" | 0.5
| 0.2
| 1
| 1
| 1
| 0.5
| 0.7
| 0.5
| 0.7
| 1.2
| 1
| 0
| 0
| 0.5
| 0.7
|-  align="center" valign="bottom"
| height="13" | 0.5
| 0.2
| 0
| 0
| 0
| 0.5
| 0.7
| 0
| 0
| 0
| 0
| 0
| 0
| 0.5
| 0.7
|-  align="center" valign="bottom"
| height="13" | 0.5
| 0.2
| 0
| 1
| 1
| 0.5
| 0.7
| 0
| 0.7
| 0.7
| 1
| 0
| 0
| 0.5
| 0.7
|-  align="center" valign="bottom"
| height="13" | 0.5
| 0.2
| 1
| 0
| 1
| 0.5
| 0.7
| 0.5
| 0
| 0.5
| 0
| 1
| 0.2
| 0.7
| 0.9
|-  align="center" valign="bottom"
| height="13" | 0.5
| 0.2
| 1
| 1
| 1
| 0.7
| 0.9
| 0.7
| 0.9
| 1.6
| 1
| 0
| 0
| 0.7
| 0.9
|-  align="center" valign="bottom"
| height="13" | 0.5
| 0.2
| 0
| 0
| 0
| 0.7
| 0.9
| 0
| 0
| 0
| 0
| 0
| 0
| 0.7
| 0.9
|-  align="center" valign="bottom"
| height="13" | 0.5
| 0.2
| 0
| 1
| 1
| 0.7
| 0.9
| 0
| 0.9
| 0.9
| 1
| 0
| 0
| 0.7
| 0.9
|-  align="center" valign="bottom"
| height="13" | 0.5
| 0.2
| 1
| 0
| 1
| 0.7
| 0.9
| 0.7
| 0
| 0.7
| 1
| 0
| 0
| 0.7
| 0.9
|-  align="center" valign="bottom"
| height="13" | 0.5
| 0.2
| 1
| 1
| 1
| 0.7
| 0.9
| 0.7
| 0.9
| 1.6
| 1
| 0
| 0
| 0.7
| 0.9
|}
 
Supervised neural network training for an OR gate.
 
Note: Initial weight equals final weight of previous iteration.
 
==Limitations==
Artificial neurons of simple types, such as the McCulloch–Pitts model, are sometimes characterized as "caricature models", in that they are intended to reflect one or more neurophysiological observations, but without regard to realism.<ref>
{{cite book
| author = F. C. Hoppensteadt and E. M. Izhikevich
| title = Weakly connected neural networks
| isbn = 978-0-387-94948-2
| publisher = Springer
| year = 1997
| page = 4
}}</ref>
 
== See also ==
*[[ADALINE]]
*[[Biological neuron models]]
*[[Connectionism]]
*[[Neural network]]
*[[Nv network]]
*[[Perceptron]]
 
== References ==
{{reflist}}
 
== Further reading ==
{{refbegin}}
* [[Warren McCulloch|McCulloch, W]]. and [[Walter Pitts|Pitts, W]]. (1943). ''A logical calculus of the ideas immanent in nervous activity.'' Bulletin of Mathematical Biophysics, 7:115 - 133.
* A.S. Samardak, A. Nogaret, N. B. Janson, A. G. Balanov, I. Farrer and D. A. Ritchie. "Noise-Controlled Signal Transmission in a Multithread Semiconductor Neuron" // Phys.Rev.Lett. 102 (2009) 226802, [http://prl.aps.org/abstract/PRL/v102/i22/e226802]
{{refend}}
 
== External links ==
* [http://www.mind.ilstu.edu/curriculum/modOverview.php?modGUI=212] A good general overview
 
[[Category:Neural networks]]
[[Category:American inventions]]
 
{{Link GA|de}}

Latest revision as of 21:25, 7 January 2015

Adrianne Swoboda is what her husband loves to give a call her though she neglects to really like being often known as like that. Software developing is what she does but she's always would like her own business. To drive is something which experts state she's been doing not that long ago. Idaho is where her home is normally and she will rarely ever move. Go to her website to seek out more: http://circuspartypanama.com

Feel free to surf to my web blog ... clash of clans hack ipod