|
|
Line 1: |
Line 1: |
| {{Infobox integer sequence
| | They call me Ned and therefore i think this might quite good when you say this kind of. To keep bees is mysterious cure he loves most. Since she was 18 she's been working as being a production and planning officer but soon her husband and her will start their own company. My family lives in Nebraska. Go to her website to learn more: http://raleighx6.blog.com/2014/06/16/la-fibra-de-vidrio-un-componente-util-con-formidable-capacidad-para-el-reciclaje/<br><br>Feel free to visit my web site [http://raleighx6.blog.com/2014/06/16/la-fibra-de-vidrio-un-componente-util-con-formidable-capacidad-para-el-reciclaje/ resina epoxi] |
| | named_after = [[John Wilson (Mathematician)|John Wilson]]
| |
| | publication_year = 1938<ref>{{Cite journal | doi = 10.2307/1968791 | last = Lehmer | first = E. | authorlink = Emma Lehmer | title = On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson | journal = Annals of Mathematics | volume = 39 | issue = 2 | pages = 350–360 | date = April 1938 | url = http://gradelle.educanet2.ch/christian.aebi/.ws_gen/14/Emma_Lehmer_1938.pdf | accessdate = 8 March 2011}}</ref>
| |
| | author = [[Emma Lehmer]]
| |
| | terms_number = 3
| |
| | first_terms = [[5 (number)|5]], [[13 (number)|13]], [[563 (number)|563]]
| |
| | largest_known_term = [[563 (number)|563]]
| |
| | OEIS = A007540
| |
| }}
| |
| A '''Wilson prime''', named after [[English people|English]] mathematician [[John Wilson (mathematician)|John Wilson]], is a [[prime number]] ''p'' such that ''p''<sup>2</sup> divides (''p'' − 1)! + 1, where "!" denotes the [[factorial function]]; compare this with [[Wilson's theorem]], which states that every prime ''p'' divides (''p'' − 1)! + 1.
| |
| | |
| The only known Wilson primes are [[5 (number)|5]], [[13 (number)|13]], and 563 {{OEIS|id=A007540}}; if any others exist, they must be greater than 2{{e|13}}.<ref name="Search">[http://arxiv.org/pdf/1209.3436v2.pdf A Search for Wilson primes] Retrieved on November 2, 2012.</ref> It has been [[conjecture]]d that infinitely many Wilson primes exist, and that the number of Wilson primes in an interval [''x'', ''y''] is about log(log(''y'')/log(''x'')).<ref>[http://primes.utm.edu/glossary/page.php?sort=WilsonPrime The Prime Glossary: Wilson prime]</ref>
| |
| | |
| Several computer searches have been done in the hope of finding new Wilson primes.<ref>{{Cite web | last = McIntosh | first = R. | authorlink = Richard McIntosh | title = WILSON STATUS (Feb. 1999) | work = E-Mail to Paul Zimmermann | date = 9 March 2004 | url = http://www.loria.fr/~zimmerma/records/Wieferich.status | accessdate = 6 June 2011}}</ref><ref>''A search for Wieferich and Wilson primes'', p 443</ref><ref>{{Cite book | last = Ribenboim | first = P. | authorlink = Paulo Ribenboim | coauthors = Keller, W. | title = Die Welt der Primzahlen: Geheimnisse und Rekorde | publisher = Springer | date = 2006 | location = Berlin Heidelberg New York | page = 241 | language = German | url = http://books.google.de/books?id=-nEM9ZVr4CsC&pg=PA248&dq=die+welt+der+primzahlen+rodenkirch&hl=de&ei=LbLsTfG8G8XdsgamnLXnCg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CDQQ6AEwAA#v=onepage&q&f=false | isbn = 3-540-34283-4}}</ref>
| |
| The [[Ibercivis]] [[distributed computing]] project includes a search for Wilson primes.<ref>[http://www.ibercivis.net/index.php?module=public§ion=channels&action=view&id_channel=2&id_subchannel=138 Ibercivis site]</ref> Another search is coordinated at the mersenneforum.<ref>[http://www.mersenneforum.org/showthread.php?t=16028 Distributed search for Wilson primes] (at mersenneforum.org)</ref>
| |
| | |
| ==Generalizations==
| |
| ===Near-Wilson primes===
| |
| A prime p satisfying the congruence (p − 1)! ≡ − 1 + ''Bp'' (mod ''p''<sup>2</sup>) with small |''B''| can be called a '''near-Wilson prime'''. Near-Wilson primes with ''B'' = 0 represent Wilson primes. The following table lists all such primes with |''B''| ≤ 100 from 10<sup>6</sup> up to 4{{e|11}}:<ref name="Search"/>
| |
| | |
| {| class="wikitable collapsible collapsed" style="width:30%;border:0px;text-align:right;"
| |
| |-
| |
| ! p !! B
| |
| |-
| |
| | 1282279 || +20
| |
| |-
| |
| | 1306817 || −30
| |
| |-
| |
| | 1308491 || −55
| |
| |-
| |
| | 1433813 || −32
| |
| |-
| |
| | 1638347 || −45
| |
| |-
| |
| | 1640147 || −88
| |
| |-
| |
| | 1647931 || +14
| |
| |-
| |
| | 1666403 || +99
| |
| |-
| |
| | 1750901 || +34
| |
| |-
| |
| | 1851953 || −50
| |
| |-
| |
| | 2031053 || −18
| |
| |-
| |
| | 2278343 || +21
| |
| |-
| |
| | 2313083 || +15
| |
| |-
| |
| | 2695933 || −73
| |
| |-
| |
| | 3640753 || +69
| |
| |-
| |
| | 3677071 || −32
| |
| |-
| |
| | 3764437 || −99
| |
| |-
| |
| | 3958621 || +75
| |
| |-
| |
| | 5062469 || +39
| |
| |-
| |
| | 5063803 || +40
| |
| |-
| |
| | 6331519 || +91
| |
| |-
| |
| | 6706067 || +45
| |
| |-
| |
| | 7392257 || +40
| |
| |-
| |
| | 8315831 || +3
| |
| |-
| |
| | 8871167 || −85
| |
| |-
| |
| | 9278443 || −75
| |
| |-
| |
| | 9615329 || +27
| |
| |-
| |
| | 9756727 || +23
| |
| |-
| |
| | 10746881 || −7
| |
| |-
| |
| | 11465149 || −62
| |
| |-
| |
| | 11512541 || −26
| |
| |-
| |
| | 11892977 || −7
| |
| |-
| |
| | 12632117 || −27
| |
| |-
| |
| | 12893203 || −53
| |
| |-
| |
| | 14296621 || +2
| |
| |-
| |
| | 16711069 || +95
| |
| |-
| |
| | 16738091 || +58
| |
| |-
| |
| | 17879887 || +63
| |
| |-
| |
| | 19344553 || −93
| |
| |-
| |
| | 19365641 || +75
| |
| |-
| |
| | 20951477 || +25
| |
| |-
| |
| | 20972977 || +58
| |
| |-
| |
| | 21561013 || −90
| |
| |-
| |
| | 23818681 || +23
| |
| |-
| |
| | 27783521 || −51
| |
| |-
| |
| | 27812887 || +21
| |
| |-
| |
| | 29085907 || +9
| |
| |-
| |
| | 29327513 || +13
| |
| |-
| |
| | 30959321 || +24
| |
| |-
| |
| | 33187157 || +60
| |
| |-
| |
| | 33968041 || +12
| |
| |-
| |
| | 39198017 || −7
| |
| |-
| |
| | 45920923 || −63
| |
| |-
| |
| | 51802061 || +4
| |
| |-
| |
| | 53188379 || −54
| |
| |-
| |
| | 56151923 || −1
| |
| |-
| |
| | 57526411 || −66
| |
| |-
| |
| | 64197799 || +13
| |
| |-
| |
| | 72818227 || −27
| |
| |-
| |
| | 87467099 || −2
| |
| |-
| |
| | 91926437 || −32
| |
| |-
| |
| | 92191909 || +94
| |
| |-
| |
| | 93445061 || −30
| |
| |-
| |
| | 93559087 || −3
| |
| |-
| |
| | 94510219 || −69
| |
| |-
| |
| | 101710369 || −70
| |
| |-
| |
| | 111310567 || +22
| |
| |-
| |
| | 117385529 || −43
| |
| |-
| |
| | 176779259 || +56
| |
| |-
| |
| | 212911781 || −92
| |
| |-
| |
| | 216331463 || −36
| |
| |-
| |
| | 253512533 || +25
| |
| |-
| |
| | 282361201 || +24
| |
| |-
| |
| | 327357841 || −62
| |
| |-
| |
| | 411237857 || −84
| |
| |-
| |
| | 479163953 || −50
| |
| |-
| |
| | 757362197 || −28
| |
| |-
| |
| | 824846833 || +60
| |
| |-
| |
| | 866006431 || −81
| |
| |-
| |
| | 1227886151 || −51
| |
| |-
| |
| | 1527857939 || −19
| |
| |-
| |
| | 1636804231 || +64
| |
| |-
| |
| | 1686290297 || +18
| |
| |-
| |
| | 1767839071 || +8
| |
| |-
| |
| | 1913042311 || −65
| |
| |-
| |
| | 1987272877 || +5
| |
| |-
| |
| | 2100839597 || −34
| |
| |-
| |
| | 2312420701 || −78
| |
| |-
| |
| | 2476913683 || +94
| |
| |-
| |
| | 3542985241 || −74
| |
| |-
| |
| | 4036677373 || −5
| |
| |-
| |
| | 4271431471 || +83
| |
| |-
| |
| | 4296847931 || +41
| |
| |-
| |
| | 5087988391 || +51
| |
| |-
| |
| | 5127702389 || +50
| |
| |-
| |
| | 7973760941 || +76
| |
| |-
| |
| | 9965682053 || −18
| |
| |-
| |
| | 10242692519 || −97
| |
| |-
| |
| | 11355061259 || −45
| |
| |-
| |
| | 11774118061 || −1
| |
| |-
| |
| | 12896325149 || +86
| |
| |-
| |
| | 13286279999 || +52
| |
| |-
| |
| | 20042556601 || +27
| |
| |-
| |
| | 21950810731 || +93
| |
| |-
| |
| | 23607097193 || +97
| |
| |-
| |
| | 24664241321 || +46
| |
| |-
| |
| | 28737804211 || −58
| |
| |-
| |
| | 35525054743 || +26
| |
| |-
| |
| | 41659815553 || +55
| |
| |-
| |
| | 42647052491 || +10
| |
| |-
| |
| | 44034466379 || +39
| |
| |-
| |
| | 60373446719 || −48
| |
| |-
| |
| | 64643245189 || −21
| |
| |-
| |
| | 66966581777 || +91
| |
| |-
| |
| | 67133912011 || +9
| |
| |-
| |
| | 80248324571 || +46
| |
| |-
| |
| | 80908082573 || −20
| |
| |-
| |
| | 100660783343 || +87
| |
| |-
| |
| | 112825721339 || +70
| |
| |-
| |
| | 231939720421 || +41
| |
| |-
| |
| | 258818504023 || +4
| |
| |-
| |
| | 260584487287 || −52
| |
| |-
| |
| | 265784418461 || −78
| |
| |-
| |
| | 298114694431 || +82
| |
| |-
| |
| |}
| |
| | |
| ===Wilson numbers===
| |
| A ''Wilson number'' is an integer ''m'' such that ''W''(''m'') ≡ 0 (mod ''m''), where ''W''(''m'') denotes the [[Wilson quotient]] (ie. <math>\tfrac{(m-1)!+1}{m}</math>) {{OEIS|id=A157250}}. If ''m'' is prime, then ''m'' is a Wilson prime. There are 12 Wilson numbers up to 5{{e|8}}.<ref>{{cite journal | doi=10.1090/S0025-5718-98-00951-X | author=Takashi Agoh | coauthors=Karl Dilcher, Ladislav Skula | title=Wilson quotients for composite moduli | journal=Math. Comput. | volume=67 | issue=222 | pages=843–861 | year=1998 | url=http://www.ams.org/journals/mcom/1998-67-222/S0025-5718-98-00951-X/S0025-5718-98-00951-X.pdf}}</ref>
| |
| | |
| == See also ==
| |
| * [[Wieferich prime]]
| |
| * [[Wall–Sun–Sun prime]]
| |
| * [[Wolstenholme prime]]
| |
| *[[PrimeGrid]]
| |
| * [[Table of congruences]]
| |
| | |
| ==Notes==
| |
| <references/>
| |
| | |
| ==References==
| |
| * {{cite journal | author=N. G. W. H. Beeger | title=Quelques remarques sur les congruences ''r''<sup>''p''−1</sup> ≡ 1 (mod ''p''<sup>2</sup>) et (''p'' − 1!) ≡ −1 (mod p<sup>2</sup>) | journal=[[Messenger of Mathematics|The Messenger of Mathematics]] | volume=43 | pages=72–84 | year=1913–1914}}
| |
| * {{cite journal | author=Karl Goldberg | title=A table of Wilson quotients and the third Wilson prime | journal=[[J. London Math. Soc.]]| volume=28 | issue=2 | pages=252–256 | year=1953 | doi=10.1112/jlms/s1-28.2.252 }}
| |
| * {{cite book | title=The new book of prime number records | author=Paulo Ribenboim | authorlink=Paulo Ribenboim | publisher=[[Springer-Verlag]] | year=1996 | isbn=0-387-94457-5 | pages=346 }}
| |
| * {{cite journal | author=Richard E. Crandall | coauthors=Karl Dilcher, Carl Pomerance | title=A search for Wieferich and Wilson primes | journal=Math. Comput. | volume=66 | issue=217 | pages=433–449 | year=1997 | doi=10.1090/S0025-5718-97-00791-6 }}
| |
| * {{cite book | title=Prime Numbers: A Computational Perspective | author=Richard E. Crandall | coauthors=Carl Pomerance | publisher=Springer-Verlag | year=2001 | page=29 | isbn=0-387-94777-9 }}
| |
| * {{cite journal | author=Erna H. Pearson | title=On the Congruences (''p'' − 1)! ≡ −1 and 2<sup>''p''−1</sup> ≡ 1 (mod ''p''<sup>2</sup>) | journal=Math. Comput. | volume=17 | pages=194–195 | year=1963 | url=http://www.ams.org/journals/mcom/1963-17-082/S0025-5718-1963-0159780-0/S0025-5718-1963-0159780-0.pdf}}
| |
| | |
| == External links ==
| |
| * [http://primes.utm.edu/glossary/page.php?sort=WilsonPrime The Prime Glossary: Wilson prime]
| |
| * {{MathWorld|urlname=WilsonPrime|title=Wilson prime}}
| |
| * [http://www.loria.fr/~zimmerma/records/Wieferich.status Status of the search for Wilson primes]
| |
| * [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.6544&rep=rep1&type=pdf Wilson Quotients for composite moduli]
| |
| * [http://gradelle.educanet2.ch/christian.aebi/.ws_gen/14/Emma_Lehmer_1938.pdf On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson]
| |
| | |
| {{Prime number classes|state=collapsed}}
| |
| | |
| [[Category:Classes of prime numbers]]
| |
| [[Category:Factorial and binomial topics]]
| |
They call me Ned and therefore i think this might quite good when you say this kind of. To keep bees is mysterious cure he loves most. Since she was 18 she's been working as being a production and planning officer but soon her husband and her will start their own company. My family lives in Nebraska. Go to her website to learn more: http://raleighx6.blog.com/2014/06/16/la-fibra-de-vidrio-un-componente-util-con-formidable-capacidad-para-el-reciclaje/
Feel free to visit my web site resina epoxi