Octagon: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Tangopaso
en>Huntster
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
In [[algebra]], '''synthetic division''' is a method of performing [[polynomial long division]], with less writing and fewer calculations.  It is mostly taught for division by binomials of the form
Bryan is actually a superstar in the making plus the vocation advancement initially next to his third hotel album, And , is definitely the confirmation. He burst open on the scene   [http://www.senatorwonderling.com luke bryan vip tickets for sale] in 2011 regarding his amazing mixture of downward-property  upcoming luke bryan concerts, [http://lukebryantickets.iczmpbangladesh.org lukebryantickets.iczmpbangladesh.org], convenience, video celebrity fantastic looks and  lyrics, is placed t in a key way. The brand new recording Top on the land chart and #2 about the pop graphs, generating it   drake concert tickets, [http://www.banburycrossonline.com banburycrossonline.com], the 2nd top first appearance during those times of 2011 for a land artist. <br><br>The kid of any ,  is aware determination and determination are important elements in terms of a prosperous career- . His initially record, Stay Me, produced the Top reaches “All My Buddies Say” and “Country Gentleman,” whilst his  energy, Doin’  Factor, identified the performer-3 direct No. 5 single men and womenElse Contacting Is really a Very good  [http://lukebryantickets.flicense.com luke bryan pittsburgh tickets] Issue.<br><br>In the drop of 2008, Concert tours: Luke Bryan  And which had an amazing list of , which include Urban. “It’s almost like you’re acquiring a   approval to travel to a higher level, claims those artists that were an element of the Concertsmore than in a larger measure of designers.” It packaged as the most successful  organized tours in its 10-year history.<br><br>Feel free to surf to my blog post: luke bryan discount tickets - [http://minioasis.com click hyperlink] -
:<math>x - a,\ </math>
 
but the method generalizes to division by any [[monic polynomial]], and to any [[polynomial]].
 
The advantages of synthetic division are that it allows one to calculate without writing variables, it uses few calculations, and it takes significantly less space on paper than long division. Also, the subtractions in long division are converted to additions by switching the signs at the very beginning, preventing sign errors.
 
Synthetic division for linear denominators is also called division through [[Ruffini's rule]].
 
== Regular synthetic division ==
The first example is synthetic division with only a [[monic polynomial|monic]] linear denominator <math>x-a</math> .
 
:<math>\frac{x^3 - 12x^2 - 42}{x - 3}</math>
 
Write the coefficients of the polynomial to be divided at the top (the zero is for the unseen 0''x'').
:<math>\begin{array}{cc}
    \begin{array}{r} \\  \\ \end{array}
    &
    \begin{array}{|rrrr}
        1 & -12 & 0 & -42 \\
          &    &  &    \\
        \hline
    \end{array}
\end{array}</math>
 
Negate the coefficients of the divisor.
:<math> \begin{array}{rr}
    -1x & + 3
\end{array}</math>
 
Write in every coefficient of the divisor but the first one on the left.
:<math>\begin{array}{cc}
    \begin{array}{r} \\ 3 \\ \end{array}
    &
    \begin{array}{|rrrr}
        1 & -12 & 0 & -42 \\
          &    &   &    \\
        \hline
    \end{array}
\end{array}</math>
 
Note the change of sign from &minus;3 to 3. "Drop" the first coefficient after the bar to the last row.
:<math>\begin{array}{cc}
    \begin{array}{r} \\ 3 \\ \\ \end{array}
    &
    \begin{array}{|rrrr} 
        1 & -12 & 0 & -42 \\
          &    &  &    \\
        \hline
        1 &    &  &    \\
    \end{array}
\end{array}</math>
 
Multiply the dropped number by the number before the bar, and place it in the next column.
:<math>\begin{array}{cc}
    \begin{array}{r} \\ 3 \\ \\ \end{array}
    &
    \begin{array}{|rrrr} 
        1 & -12 & 0 & -42 \\
          &  3 &  &    \\
        \hline
        1 &    &  &    \\
    \end{array}
\end{array}</math>
 
Perform an addition in the next column.
:<math>\begin{array}{cc}
    \begin{array}{c} \\ 3 \\ \\ \end{array}
    &
    \begin{array}{|rrrr} 
        1 & -12 & 0 & -42 \\
          &  3 &  &    \\
        \hline
        1 &  -9 &  &    \\
    \end{array}
\end{array}</math>
 
Repeat the previous two steps and the following is obtained:
:<math>\begin{array}{cc}
    \begin{array}{c} \\ 3 \\ \\ \end{array}
    &
    \begin{array}{|rrrr} 
        1 & -12 &  0 & -42 \\
          &  3 & -27 & -81 \\
        \hline
        1 & -9 & -27 & -123
    \end{array}
\end{array}</math>
 
Count the terms to the left of the bar.  Since there is only one, the remainder has degree zero. Mark the separation with a vertical bar.
:<math> \begin{array}{rrr|r}
    1 &  -9 & -27 & -123
\end{array}</math>
The terms are written with increasing degree from right to left beginning with degree zero for both the remainder and the result.
:<math> \begin{array}{rrr|r}
    1x^2 &  -9x & -27 & -123
\end{array}</math>
 
The result of our division is:
:<math>\frac{x^3 - 12x^2 - 42}{x - 3} = x^2 - 9x - 27 - \frac{123}{x - 3}</math>
 
'''Evaluating Polynomials by the Remainder Theorem'''
 
The above form of synthetic division is useful in the context of the [[Polynomial remainder theorem]] for evaluating [[univariate]] polynomials. To summarize, the value of <math>p(x)</math> at <math>a</math> is equal to the [[remainder]] of <math>\frac{p(x)}{(x-a)}</math>. The advantage of calculating the value this way is that it requires just over half as many multiplication steps as naive evaluation. An alternative evaluation strategy is [[Horner's method]].
 
== Expanded synthetic division ==
This method generalizes to division by any [[monic polynomial]] with only a slight modification with '''changes in bold'''.  Using the same steps as before, let's try to perform the following division:
:<math>\frac{x^3 - 12x^2 - 42}{x^2 + x - 3}</math>
 
We concern ourselves only with the coefficients.
Write the coefficients of the polynomial to be divided at the top.
:<math> \begin{array}{|rrrr}
    1 & \text{-}12 & 0 & \text{-}42
\end{array}</math>
 
Negate the coefficients of the divisor.  
:<math> \begin{array}{rrr}
    \text{-}1x^2 &-1x &+3
\end{array}</math>
 
Write in every coefficient but the first one on the left '''in an upward right diagonal''' (see next diagram).
:<math>\begin{array}{cc}
    \begin{array}{rr} \\ &3 \\ \text{-}1& \\ \end{array}
    &
    \begin{array}{|rrrr}
        1 & \text{-}12 & 0 & \text{-}42 \\
          &    &  &    \\
          &    &  &    \\
        \hline
    \end{array}
\end{array}</math>
 
Note the change of sign from  '''1 to &minus;1 and from &minus;3 to 3 '''. "Drop" the first coefficient after the bar to the last row.
 
:<math>\begin{array}{cc}
    \begin{array}{rr} \\ &3 \\ \text{-}1& \\ \\ \end{array}
    &
    \begin{array}{|rrrr}
        1 & \text{-}12 & 0 & \text{-}42 \\
          &    &  &    \\
          &    &  &    \\
        \hline
        1 &    &  &    \\   
    \end{array}
\end{array}</math>
 
Multiply the dropped number by the '''diagonal''' before the bar, and place the resulting entries '''diagonally to the right''' from the dropped entry.
:<math>\begin{array}{cc}
    \begin{array}{rr} \\ &3 \\ \text{-}1& \\ \\ \end{array}
    &
    \begin{array}{|rrrr}
        1 & \text{-}12 & 0 & \text{-}42 \\
          &    & 3 &    \\
          & \text{-}1 &  &    \\
        \hline
        1 &    &  &    \\   
    \end{array}
\end{array}</math>
 
Perform an addition in the next column.
:<math>\begin{array}{cc}
    \begin{array}{rr} \\ &3 \\ \text{-}1& \\ \\ \end{array}
    &
    \begin{array}{|rrrr}
        1 & \text{-}12 & 0 & \text{-}42 \\
          &    & 3 &    \\
          &  \text{-}1 &  &    \\
        \hline
        1 & \text{-}13 &  &    \\   
    \end{array}
\end{array}</math>
 
Repeat the previous two steps '''until you would go past the entries at the top with the next diagonal'''.
:<math>\begin{array}{cc}
    \begin{array}{rr} \\ &3 \\ \text{-}1& \\ \\ \end{array}
    &
    \begin{array}{|rrrr}
        1 & \text{-}12 &  0 & \text{-}42 \\
          &    &  3 & \text{-}39 \\
          &  \text{-}1 & 13 &    \\
        \hline
        1 & \text{-}13 & 16 &    \\   
    \end{array}
\end{array}</math>
 
Then simply add up any remaining columns.
:<math>\begin{array}{cc}
    \begin{array}{rr} \\ &3 \\ \text{-}1& \\ \\ \end{array}
    &
    \begin{array}{|rrrr}
        1 & \text{-}12 &  0 & \text{-}42 \\
          &    &  3 & \text{-}39 \\
          &  \text{-}1 & 13 &    \\
        \hline
        1 & \text{-}13 & 16 & \text{-}81 \\   
    \end{array}
\end{array}</math>
 
Count the terms to the left of the bar.  Since there are two, the remainder has degree one. Mark the separation with a vertical bar.
:<math> \begin{array}{rr|rr}
    1 & \text{-}13 & 16 & \text{-}81
\end{array}</math>
The terms are written with increasing degree from right to left beginning with degree zero for both the remainder and the result.
:<math> \begin{array}{rr|rr}
    1x &  \text{-}13 & 16x & \text{-}81
\end{array}</math>
 
The result of our division is:
:<math>\frac{x^3 - 12x^2 - 42}{x^2 + x - 3} = x - 13 + \frac{16x - 81}{x^2 + x - 3}</math>
 
=== For non-monic divisors ===
 
With a little prodding, the expanded technique may be generalised even further to work for any polynomial, not just monics. The usual way of doing this would be to divide the divisor <math>g(x)</math> with its leading coefficient (call it ''a''):
:<math>h(x) = \frac{g(x)}{a}</math>
 
then using synthetic division with <math>h(x)</math> as the divisor, and then dividing the quotient by ''a'' to get the quotient of the original division (the remainder stays the same). But this often produces unsightly fractions which get removed later, and is thus more prone to error. It is possible to do it without first dividing the coefficients of <math>g(x)</math> by ''a''.
 
As can be observed by first performing long division with such a non-monic divisor, the coefficients of <math>f(x)</math> are divided by the leading coefficient of <math>g(x)</math> after "dropping", and before multiplying.
 
Let's illustrate by performing the following division:
 
:<math>\frac{6x^3+5x^2-7}{3x^2-2x-1}</math>
 
A slightly modified table is used:
 
:<math>\begin{array}{cc}
    \begin{array}{rrr} \\ &1& \\ 2&& \\ \\&&/3 \\ \end{array}
    \begin{array}{|rrrr}
        6 & 5 & 0 & \text{-}7 \\
          &    &  &    \\
          &    &  &    \\
        \hline
          &    &  &    \\
          &    &  &    \\ 
    \end{array}
\end{array}</math>
 
Note the extra row at the bottom. This is used to write values found by dividing the "dropped" values by the leading coefficient of <math>g(x)</math> (in this case, indicated by the ''/3''; note that, unlike the rest of the coefficients of <math>g(x)</math>, the sign of this number is not changed).
 
Next, the first coefficient of <math>f(x)</math> is dropped as usual:
 
:<math>\begin{array}{cc}
    \begin{array}{rrr} \\ &1& \\ 2&& \\ \\&&/3 \\ \end{array}
    \begin{array}{|rrrr}
        6 & 5 & 0 & \text{-}7 \\
          &    & &    \\
          &    &  &    \\
        \hline
        6 &    &  &    \\
          &    &  &    \\ 
    \end{array}
\end{array}</math>
 
and then the dropped value is divided by 3 and placed in the row below:
 
:<math>\begin{array}{cc}
    \begin{array}{rrr} \\ &1& \\ 2&& \\ \\&&/3 \\ \end{array}
    \begin{array}{|rrrr}
        6 & 5 & 0 & \text{-}7 \\
          &    & &    \\
          &    &  &    \\
        \hline
        6 &    &  &    \\
        2 &    &  &    \\ 
    \end{array}
\end{array}</math>
 
Next, the '''new''' (divided) value is used to fill the top rows with multiples of 2 and 1, as in the expanded technique:
 
:<math>\begin{array}{cc}
    \begin{array}{rrr} \\ &1& \\ 2&& \\ \\&&/3 \\ \end{array}
    \begin{array}{|rrrr}
        6 & 5 & 0 & \text{-}7 \\
          &  & 2 &    \\
          & 4 &  &    \\
        \hline
        6 &    &  &    \\
        2 &    &  &    \\ 
    \end{array}
\end{array}</math>
 
The 5 is dropped next, with the obligatory adding of the 4 below it, and the answer is divided again:
 
:<math>\begin{array}{cc}
    \begin{array}{rrr} \\ &1& \\ 2&& \\ \\&&/3 \\ \end{array}
    \begin{array}{|rrrr}
        6 & 5 & 0 & \text{-}7 \\
          &  & 2 &    \\
          & 4 &  &    \\
        \hline
        6 & 9  &  &    \\
        2 & 3  &  &    \\ 
    \end{array}
\end{array}</math>
 
Then the 3 is used to fill the top rows:
 
:<math>\begin{array}{cc}
    \begin{array}{rrr} \\ &1& \\ 2&& \\ \\&&/3 \\ \end{array}
    \begin{array}{|rrrr}
        6 & 5 & 0 & \text{-}7 \\
          &  & 2 &  3 \\
          & 4 & 6 &    \\
        \hline
        6 & 9 &  &    \\
        2 & 3 &  &    \\ 
    \end{array}
\end{array}</math>
 
At this point, if, after getting the third sum, we were to try and use it to fill the top rows, we would "fall off" the right side, thus the third sum is the first coefficient of the remainder, as in regular synthetic division. But the values of the remainder are '''not''' divided by the leading coefficient of the divisor:
 
:<math>\begin{array}{cc}
    \begin{array}{rrr} \\ &1& \\ 2&& \\ \\&&/3 \\ \end{array}
    \begin{array}{|rrrr}
        6 & 5 & 0 & \text{-}7 \\
          &  & 2 &  3  \\
          & 4 & 6 &    \\
        \hline
        6 & 9 & 8 & \text{-}4  \\
        2 & 3 &  &    \\ 
    \end{array}
\end{array}</math>
 
Now we can read off the coefficients of the answer. As in expanded synthetic division, the last two values (2 is the degree of the divisor) are the coefficients of the remainder, and the remaining values are the coefficients of the quotient:
 
:<math> \begin{array}{rr|rr}
    2x & +3 & 8x & \text{-}4
\end{array}</math>
 
and the result is
 
:<math>\frac{6x^3+5x^2-7}{3x^2-2x-1} = 2x + 3 + \frac{8x - 4}{3x^2-2x-1}</math>
 
=== Compact Expanded Synthetic Division ===
 
However, the '''diagonal''' format above becomes less space-efficient when the degree of the divisor exceeds half of the degree of the dividend. It is easy to see that we have complete freedom to write each product in any row, as long as it is in the correct column. So the algorithm can be '''compactified''' by a '''greedy strategy''', as illustrated in the division below.
 
<math>\dfrac{ax^7+bx^6+cx^5+dx^4+ex^3+fx^2+gx+h}{ix^4-jx^3-kx^2-lx-m}=nx^3+ox^2+px+q+\dfrac{rx^3+sx^2+tx+u}{ix^4-jx^3-kx^2-lx-m}</math>
 
<math>\begin{array}{cc} \begin{array}{rrrr} \\ \\ \\ \\ j &k & l & m \\ \end{array} & \begin{array}{|rrrr|rrrr} & & & & qj & & & \\ & & & pj & pk & qk & & \\ & & oj & ok & ol & pl & ql & \\ & nj & nk & nl & nm & om & pm & qm \\ a & b & c & d & e & f & g & h \\ \hline a & o_0 & p_0 & q_0 & r & s & t & u \\ n & o & p & q & & & & \\ \end{array} \end{array}</math>
 
The following describes how to perform the algorithm; this algorithm includes steps for dividing non-monic divisors:
 
<ol style="list-style-type: decimal;">
<li>
 
Write the coefficients of the dividend on a bar
<br />
<br />
 
<math>\begin{array}{cc} \begin{array}{|rrrrrrrr} a & b & c & d & e & f & g & h \\ \hline \end{array} \end{array}</math>
<br />
<br />
 
</li>
<li>
 
Negate the coefficients of the divisor. Write in every coefficient of the divisor but the first (leading coefficient) one on the left.
<br />
<br />
 
<math>\begin{array}{cc} \begin{array}{rrrr} j &k & l & m \\ \end{array} & \begin{array}{|rrrrrrrr} a & b & c & d & e & f & g & h \\ \hline \end{array} \end{array}</math>
<br />
<br />
 
</li>
<li>
 
From the number of coefficients placed on the left side, count the number of dividend coefficients above the bar, starting from the rightmost column. Then place a vertical bar on the row below and to the left of that column. This vertical bar marks the separation between the quotient and the remainder.
<br /><br />
 
<math>\begin{array}{cc} \begin{array}{rrrr} j &k & l & m \\ \\ \end{array} & \begin{array}{|rrrr|rrrr} a & b & c & d & e & f & g & h \\ \hline & & & & & & & \\ \end{array} \end{array}</math>
<br />
<br />
 
</li>
<li>
 
Drop the first coefficient of the dividend below the bar.
<br /><br />
 
<math>\begin{array}{cc} \begin{array}{rrrr} j &k & l & m \\ \\ \end{array} & \begin{array}{|rrrr|rrrr} a & b & c & d & e & f & g & h \\ \hline a &  & & & & & & \\ \end{array} \end{array}</math>
<br />
<br />
 
</li>
<li><ul>
<li>
 
Divide the last dropped/summed number by the leading coefficient of the divisor and place it on the row below (this doesn't need to be done if the coefficient is 1).
 
In this case <math>n = \dfrac{a}{i}</math>
 
</li>
<li>
 
Multiply the last dropped/summed number (or the divided dropped/summed number) to each negated coefficients on the left (starting with the left most); skip if the summed number is zero. Place each product on top of the subsequent columns.
 
</li></ul>
 
<math>\begin{array}{cc} \begin{array}{rrrr} \\ j &k & l & m \\ \end{array} & \begin{array}{|rrrr|rrrr} & nj & nk & nl & nm & & & \\ a & b & c & d & e & f & g & h \\ \hline a & & & & & & & \\ n & & & & & & & \\ \end{array} \end{array}</math>
 
</li>
<li>
 
Perform an column-wise addition on the next column.
<br />
<math>\begin{array}{cc} \begin{array}{rrrr} \\ j &k & l & m \\ \end{array} & \begin{array}{|rrrr|rrrr} & nj & nk & nl & nm & & & \\ a & b & c & d & e & f & g & h \\ \hline a & o_0 & & & & & & \\ n & & & & & & & \\ \end{array} \end{array}</math>
 
</li>
<li>
 
Repeat the previous two steps. Stop when you performed the previous two steps on the number just before the vertical bar.
 
<br />
<br />
Let <math>o = \dfrac{o_0}{i}</math>
<br />
 
 
<math>\begin{array}{cc} \begin{array}{rrrr} \\ \\ j &k & l & m \\ \end{array} & \begin{array}{|rrrr|rrrr} & & oj & ok & ol & & & \\ & nj & nk & nl & nm & om & & \\ a & b & c & d & e & f & g & h \\ \hline a & o_0 & p_0 & & & & & \\ n & o & & & & & & \\ \end{array} \end{array}</math>
 
<br />
<br />
Let <math>p = \dfrac{p_0}{i}</math>
<br />
 
<math>\begin{array}{cc} \begin{array}{rrrr} \\ \\ \\ j &k & l & m \\ \end{array} & \begin{array}{|rrrr|rrrr} & & & pj & pk & & & \\ & & oj & ok & ol & pl & & \\ & nj & nk & nl & nm & om & pm & \\ a & b & c & d & e & f & g & h \\ \hline a & o_0 & p_0 & q_0 & & & & \\ n & o & p & & & & & \\ \end{array} \end{array}</math>
 
<br />
<br />
Let <math>q = \dfrac{q_0}{i}</math>
<br />
 
 
<math>\begin{array}{cc} \begin{array}{rrrr} \\ \\ \\ \\ j &k & l & m \\ \end{array} & \begin{array}{|rrrr|rrrr} & & & & qj & & & \\ & & & pj & pk & qk & & \\ & & oj & ok & ol & pl & ql & \\ & nj & nk & nl & nm & om & pm & qm \\ a & b & c & d & e & f & g & h \\ \hline a & o_0 & p_0 & q_0 & r & & & \\ n & o & p & q & & & & \\ \end{array} \end{array}</math>
 
</li>
<li>
 
Perform the remaining column-wise additions on the subsequent columns (getting the remainder).
<br />
<math>\begin{array}{cc} \begin{array}{rrrr} \\ \\ \\ \\ j &k & l & m \\ \end{array} & \begin{array}{|rrrr|rrrr} & & & & qj & & & \\ & & & pj & pk & qk & & \\ & & oj & ok & ol & pl & ql & \\ & nj & nk & nl & nm & om & pm & qm \\ a & b & c & d & e & f & g & h \\ \hline a & o_0 & p_0 & q_0 & r & s & t & u \\ n & o & p & q & & & & \\ \end{array} \end{array}</math>
 
</li>
<li>
 
The results below the horizontal bar would be interpreted with increasing degree from right to left beginning with degree zero for both the remainder and the result.
<br />
<br />
 
<math>\dfrac{ax^7+bx^6+cx^5+dx^4+ex^3+fx^2+gx+h}{ix^4-jx^3-kx^2-lx-m}=nx^3+ox^2+px+q+\dfrac{rx^3+sx^2+tx+u}{ix^4-jx^3-kx^2-lx-m}</math>
<br />
<br />
 
</li></ol>
 
==See also==
*[[Polynomial remainder theorem]]
*[[Euclidean domain]]
*[[Gröbner basis]]
*[[Greatest common divisor of two polynomials]]
*[[Horner scheme]]
 
==References==
*{{cite journal |author=Lianghuo Fan |title=A Generalization of Synthetic Division and A General Theorem of Division of Polynomials |journal=Mathematical Medley |year=2003 |volume=30 |issue=1 |pages=30–37 |url=http://eprints.soton.ac.uk/168861/1/FLH_article_on_polynomial_division.pdf}}
 
*{{cite journal |author=Li Zhou |title=Short Division of Polynomials |journal=College Mathematics Journal |year=2009 |volume=40 |issue=1 |pages=44–46}}
 
[[Category:Polynomials]]
[[Category:Computer algebra]]
[[Category:Division]]

Latest revision as of 13:24, 7 December 2014

Bryan is actually a superstar in the making plus the vocation advancement initially next to his third hotel album, And , is definitely the confirmation. He burst open on the scene luke bryan vip tickets for sale in 2011 regarding his amazing mixture of downward-property upcoming luke bryan concerts, lukebryantickets.iczmpbangladesh.org, convenience, video celebrity fantastic looks and lyrics, is placed t in a key way. The brand new recording Top on the land chart and #2 about the pop graphs, generating it drake concert tickets, banburycrossonline.com, the 2nd top first appearance during those times of 2011 for a land artist.

The kid of any , is aware determination and determination are important elements in terms of a prosperous career- . His initially record, Stay Me, produced the Top reaches “All My Buddies Say” and “Country Gentleman,” whilst his energy, Doin’ Factor, identified the performer-3 direct No. 5 single men and women: Else Contacting Is really a Very good luke bryan pittsburgh tickets Issue.”

In the drop of 2008, Concert tours: Luke Bryan And which had an amazing list of , which include Urban. “It’s almost like you’re acquiring a approval to travel to a higher level, claims those artists that were an element of the Concertsmore than in a larger measure of designers.” It packaged as the most successful organized tours in its 10-year history.

Feel free to surf to my blog post: luke bryan discount tickets - click hyperlink -