|
|
Line 1: |
Line 1: |
| [[Image:sine cosine integral.svg|right|thumb|Si(x) (blue) and Ci(x) (green) plotted on the same plot.]] | | You can download from the beneath hyperlink, if [http://Www.Sharkbayte.com/keyword/you%27re+hunting you're hunting] for clash of families no charge gems, elixir and senior. If you have any type of concerns pertaining to where and just how to make use of hack clash of clans ([http://prometeu.net click through the next page]), you could contact us at our own page. You'll get the greatest secret official document to get accessibility having to do with assets and endless gallstones by downloading from adhering to links.<br><br>Though Supercell, by allowing those illusion on the multi player game, taps into you're instinctual male drive to assist you to from the status hierarchy, and even though it''s unattainable to the top of your hierarchy if you do not have been logging in each day because the game was released plus you invested actually money in extra builders, the drive for getting a small bit further compels enough visitors to fork over a real income of virtual 'gems'" that pastime could be the top-grossing app within the Iphone app Store.<br><br>Video games are very well-liked many homes. The majority of people perform online online games to pass through time, however, some blessed individuals are paid to experience clash of clans sur pc. Video gaming is going to turn out to be preferred for some opportunity into the future. These tips will to be able to if you are going try out online.<br><br>Online games acquire more that can offer your son or daughter than only an opportunity to capture points. Try deciding on gaming that instruct your infant some thing. Equally an example, sports activities video games will assist your youngster learn our own guidelines for game titles, and exactly how about the internet games are played finally out. Check out some testimonials to assist you to discover game titles who seem to supply a learning experience instead of just mindless, repeated motion.<br><br>Actual not only provides execute tools, there is perhaps Clash of Clans compromise no survey by any kind of. Strict anti ban system take users to utilize the program and play without much hindrance. If players are interested in best man program, they are obviously required to visit this site and obtain the specific hack tool trainer immediately. The name of the online site is Amazing Cheats. A number of web site have different types of software by which many can get past a difficult situation stages in the task.<br><br>Had you been aware that some personal games are educational accessories? If you know a baby that likes to engage in video games, educational remedies are a fantastic indicates to combine learning with entertaining. The World wide web can connect you alongside thousands of parents who may similar values and are usually more than willing to help share their reviews as well as notions with you.<br><br>Pc games or computer games elevated in popularity nowadays, not necessarily with the younger generation, but also with grownups as well. There are many games available, ranging coming from the intellectual to the regular - your options are limitless. Online element playing games are amongst the most popular games anywhere planet. With this popularity, plenty people today that are exploring and on the lookout for ways to go through the whole game as at once as they can; possibilities for using computer How to hack in clash of clans range from simply wanting to own your own friends stare at you inside awe, or getting a considerable amount of game money a person really can sell later, or simply just into rid the game among the fun factor for another players. |
| In [[mathematics]], the '''trigonometric integrals''' are a [[indexed family|family]] of [[integral]]s which involve [[trigonometric function]]s. A number of the basic trigonometric integrals are discussed at the [[list of integrals of trigonometric functions]].
| |
| | |
| ==Sine integral==
| |
| [[Image:Sine integral.svg|thumb|right|Plot of '''Si(''x'')''' for 0 ≤ ''x'' ≤ 8π.]]
| |
| The different [[sine]] integral definitions are:
| |
| | |
| :<math>{\rm Si}(x) = \int_0^x\frac{\sin t}{t}\,dt</math> | |
| | |
| :<math>{\rm si}(x) = -\int_x^\infty\frac{\sin t}{t}\,dt</math>
| |
| | |
| So by definition, <math>{\rm Si}(x)</math> is the [[primitive]] of <math>\sin x/x</math> which is zero for <math>x=0</math> and <math>{\rm si}(x)</math> is the primitive of <math>\sin x/x</math> which is zero for <math>x=\infty</math>. The relation is given by
| |
| | |
| :<math>{\rm Si}(x) - {\rm si}(x) = \int_0^\infty\frac{\sin t}{t}\,dt = \frac{\pi}{2},</math>
| |
| | |
| where the last integral is known as the [[Dirichlet integral]]. Note that <math>\frac{\sin t}{t}</math> is the [[sinc function]] and also the zeroth [[Bessel function#Spherical Bessel functions: jn.2C yn|spherical Bessel function]].
| |
| | |
| In [[signal processing]], the oscillations of the Sine integral cause [[overshoot (signal)|overshoot]] and [[ringing artifacts]] when using the [[sinc filter]], and [[frequency domain]] ringing if using a truncated sinc filter as a [[low-pass filter]].
| |
| | |
| The [[Gibbs phenomenon]] is a related phenomenon: thinking of sinc as a [[low-pass filter]] and the Sine integral as its [[convolution]] with the [[Heaviside step function]], it corresponds to truncating the [[Fourier series]], which causes the Gibbs phenomenon.
| |
| | |
| ==Cosine integral==
| |
| [[Image:Cosine integral.svg|thumb|right|Plot of '''Ci(''x'')''' for 0 < ''x'' ≤ 8π.]]
| |
| The different [[cosine]] integral definitions are:
| |
| | |
| :<math>{\rm Ci}(x) = \gamma + \ln x + \int_0^x\frac{\cos t-1}{t}\,dt</math>
| |
| | |
| :<math>{\rm ci}(x) = -\int_x^\infty\frac{\cos t}{t}\,dt</math>
| |
| | |
| :<math>{\rm Cin}(x) = \int_0^x\frac{1-\cos t}{t}\,dt</math>
| |
| | |
| where <math>\gamma</math> is the [[Euler–Mascheroni constant]].
| |
| | |
| <math>{\rm ci}(x)</math> is the primitive of <math>\cos x/x</math> which is zero for <math>x=\infty</math>. We have: | |
| | |
| :<math>{\rm ci}(x)={\rm Ci}(x)\,</math>
| |
| :<math>{\rm Cin}(x)=\gamma+\ln x-{\rm Ci}(x)\,</math>
| |
| | |
| ==Hyperbolic sine integral==
| |
| The [[hyperbolic sine]] integral:
| |
| | |
| :<math>{\rm Shi}(x) = \int_0^x\frac{\sinh t}{t}\,dt = {\rm shi}(x).</math>
| |
| :<math>{\rm Shi}(x)=\sum_{n=0}^\infty \frac{x^{2n+1}}{(2n+1)^2(2n)!}=x+\frac{x^3}{3!\cdot3}+\frac{x^5}{5!\cdot5}+\frac{x^7}{7! \cdot7}+\cdots.</math>
| |
| | |
| ==Hyperbolic cosine integral==
| |
| The [[hyperbolic cosine]] integral is
| |
| | |
| :<math>{\rm Chi}(x) = \gamma+\ln x + \int_0^x\frac{\cosh t-1}{t}\,dt = {\rm chi}(x)</math>
| |
| | |
| ==Nielsen's spiral==
| |
| [[Image:Nielsen's spiral.png|thumb|right|Nielsen's spiral.]]
| |
| The [[spiral]] formed by parametric plot of si,ci is known as [[Nielsen's spiral]]. It is also referred to as the [[Euler spiral]], [http://mathworld.wolfram.com/CornuSpiral.html the Cornu spiral], a clothoid, or as a linear-curvature polynomial spiral. The spiral is also closely related to the [[Fresnel integral]]s. This spiral has applications in vision processing, road and track construction and other areas. | |
| | |
| ==Expansion==
| |
| Various expansions can be used for evaluation of Trigonometric integrals, depending on the range of the argument.
| |
| | |
| ===Asymptotic series (for large argument)===
| |
| :<math>{\rm Si}(x)=\frac{\pi}{2}
| |
| - \frac{\cos x}{x}\left(1-\frac{2!}{x^2}+\frac{4!}{x^4}-\frac{6!}{x^6}\cdots\right)
| |
| - \frac{\sin x}{x}\left(\frac{1}{x}-\frac{3!}{x^3}+\frac{5!}{x^5}-\frac{7!}{x^7}\cdots\right)</math>
| |
| :<math>{\rm Ci}(x)= \frac{\sin x}{x}\left(1-\frac{2!}{x^2}+\frac{4!}{x^4}-\frac{6!}{x^6}\cdots\right)
| |
| -\frac{\cos x}{x}\left(\frac{1}{x}-\frac{3!}{x^{3}}+\frac{5!}{x^5}-\frac{7!}{x^7}\cdots\right)</math>
| |
| | |
| These series are [[Asymptotic series|asymptotic]] and divergent, although can be used for estimates and even precise evaluation at <math>~{\rm Re} (x) \gg 1~</math>. | |
| | |
| ===Convergent series===
| |
| :<math>{\rm Si}(x)= \sum_{n=0}^\infty \frac{(-1)^{n}x^{2n+1}}{(2n+1)(2n+1)!}=x-\frac{x^3}{3!\cdot3}+\frac{x^5}{5!\cdot5}-\frac{x^7}{7! \cdot7}\pm\cdots</math>
| |
| :<math>{\rm Ci}(x)= \gamma+\ln x+\sum_{n=1}^{\infty}\frac{(-1)^{n}x^{2n}}{2n(2n)!}=\gamma+\ln x-\frac{x^2}{2!\cdot2}+\frac{x^4}{4! \cdot4}\mp\cdots</math>
| |
| | |
| These series are convergent at any complex <math>~x~</math>, although for <math>|x|\gg 1</math> the series will converge slowly initially, requiring many terms for high precisions.
| |
| | |
| ==Relation with the exponential integral of imaginary argument==
| |
| The function
| |
| | |
| : <math> {\rm E}_1(z) = \int_1^\infty \frac{\exp(-zt)}{t}\,{\rm d} t \qquad({\rm Re}(z) \ge 0) </math>
| |
| | |
| is called the [[exponential integral]]. It is closely related to Si and Ci:
| |
| | |
| :<math>
| |
| {\rm E}_1( {\rm i}\!~ x) = i\left(-\frac{\pi}{2} + {\rm Si}(x)\right)-{\rm Ci}(x) = i~{\rm si}(x) - {\rm ci}(x) \qquad(x>0)
| |
| </math> | |
| | |
| As each involved function is analytic except the cut at negative values of the argument,
| |
| the area of validity of the relation should be extended to <math>{\rm Re}(x)>0</math>.
| |
| (Out of this range, additional terms which are integer factors of <math>\pi</math> appear in the expression).
| |
| | |
| Cases of imaginary argument of the generalized integro-exponential function are
| |
| | |
| : <math>
| |
| \int_1^\infty \cos(ax)\frac{\ln x}{x} \, dx =
| |
| -\frac{\pi^2}{24}+\gamma\left(\frac{\gamma}{2}+\ln a\right)+\frac{\ln^2a}{2}
| |
| +\sum_{n\ge 1}\frac{(-a^2)^n}{(2n)!(2n)^2},
| |
| </math>
| |
| | |
| which is the real part of
| |
| | |
| : <math>
| |
| \int_1^\infty e^{iax}\frac{\ln x}{x} \, dx = -\frac{\pi^2}{24} + \gamma\left(\frac{\gamma}{2}+\ln a\right)+\frac{\ln^2 a}{2}-\frac{\pi}{2}i(\gamma+\ln a) + \sum_{n\ge 1}\frac{(ia)^n}{n!n^2}.
| |
| </math> | |
| | |
| Similarly
| |
| | |
| : <math>
| |
| \int_1^\infty e^{iax}\frac{\ln x}{x^2}dx
| |
| =1+ia[-\frac{\pi^2}{24}+\gamma\left(\frac{\gamma}{2}+\ln a-1\right)+\frac{\ln^2 a}{2}-\ln a+1
| |
| -\frac{i\pi}{2}(\gamma+\ln a-1)]+\sum_{n\ge 1}\frac{(ia)^{n+1}}{(n+1)!n^2}.
| |
| </math>
| |
| | |
| ==Efficient evaluation==
| |
| | |
| [[Padé_approximant|Padé approximants]] of the convergent Taylor series provide an efficient way to evaluate the functions for small arguments. The following formulae are accurate to better than <math>10^{-16}</math> for <math>0 \le x \le 4</math>:
| |
| | |
| <br> | |
| <math>
| |
| \begin{array}{rcl}
| |
| {\rm Si}(x) &=& x \cdot \left(
| |
| \frac{
| |
| \begin{array}{l}
| |
| 1 -4.54393409816329991\cdot 10^{-2} \cdot x^2 + 1.15457225751016682\cdot 10^{-3} \cdot x^4 - 1.41018536821330254\cdot 10^{-5} \cdot x^6 \\
| |
| ~~~ + 9.43280809438713025 \cdot 10^{-8} \cdot x^8 - 3.53201978997168357 \cdot 10^{-10} \cdot x^{10} + 7.08240282274875911 \cdot 10^{-13} \cdot x^{12} \\
| |
| ~~~ - 6.05338212010422477 \cdot 10^{-16} \cdot x^{14}
| |
| \end{array}
| |
| }
| |
| {
| |
| \begin{array}{l}
| |
| 1 + 1.01162145739225565 \cdot 10^{-2} \cdot x^2 + 4.99175116169755106 \cdot 10^{-5} \cdot x^4 + 1.55654986308745614 \cdot 10^{-7} \cdot x^6 \\
| |
| ~~~ + 3.28067571055789734 \cdot 10^{-10} \cdot x^8 + 4.5049097575386581 \cdot 10^{-13} \cdot x^{10} + 3.21107051193712168 \cdot 10^{-16} \cdot x^{12}
| |
| \end{array}
| |
| }
| |
| \right)\\
| |
| &~&\\
| |
| {\rm Ci}(x) &=& \gamma + \ln(x) +\\
| |
| && x^2 \cdot \left(
| |
| \frac{
| |
| \begin{array}{l}
| |
| -0.25 + 7.51851524438898291 \cdot 10^{-3} \cdot x^2 - 1.27528342240267686 \cdot 10^{-4} \cdot x^4 + 1.05297363846239184 \cdot 10^{-6} \cdot x^6 \\
| |
| ~~~ -4.68889508144848019 \cdot 10^{-9} \cdot x^8 + 1.06480802891189243 \cdot 10^{-11} \cdot x^{10} - 9.93728488857585407 \cdot 10^{-15} \cdot x^{12} \\
| |
| \end{array}
| |
| }
| |
| {
| |
| \begin{array}{l}
| |
| 1 + 1.1592605689110735 \cdot 10^{-2} \cdot x^2 + 6.72126800814254432 \cdot 10^{-5} \cdot x^4 + 2.55533277086129636 \cdot 10^{-7} \cdot x^6 \\
| |
| ~~~ + 6.97071295760958946 \cdot 10^{-10} \cdot x^8 + 1.38536352772778619 \cdot 10^{-12} \cdot x^{10} + 1.89106054713059759 \cdot 10^{-15} \cdot x^{12} \\
| |
| ~~~ + 1.39759616731376855 \cdot 10^{-18} \cdot x^{14} \\
| |
| \end{array}
| |
| }
| |
| \right)
| |
| \end{array}
| |
| </math>
| |
| | |
| <br> | |
| | |
| For <math>x > 4</math>, one can use the helper functions:
| |
| | |
| <br>
| |
| <math>
| |
| \begin{array}{rcl}
| |
| f(x)
| |
| &=& \int_0^\infty \frac{sin(t)}{t+x} dt = \int_0^\infty \frac{e^{-x t}}{t^2 + 1} dt
| |
| ~=~ {\rm Ci}(x) \sin(x) + \left(\frac{\pi}{2} - {\rm Si}(x) \right) \cos(x) \\
| |
| g(x)
| |
| &=& \int_0^\infty \frac{cos(t)}{t+x} dt = \int_0^\infty \frac{t e^{-x t}}{t^2 + 1} dt
| |
| ~=~ -{\rm Ci}(x) \cos(x) + \left(\frac{\pi}{2} - {\rm Si}(x) \right) \sin(x) \\
| |
| \end{array}
| |
| </math>
| |
| | |
| <br>
| |
| using which, the trigonometric integrals may be expressed as
| |
| | |
| <br>
| |
| <math>
| |
| \begin{array}{rcl}
| |
| {\rm Si}(x) &=& \frac{\pi}{2} - f(x) \cos(x) - g(x) \sin(x) \\
| |
| {\rm Ci}(x) &=& f(x) \sin(x) - g(x) \cos(x) \\
| |
| \end{array}
| |
| </math>
| |
| | |
| <br>
| |
| Chebyshev-Padé expansions of <math>\;\;\frac{1}{\sqrt{y}} \; f\left(\frac{1}{\sqrt{y}} \right) \;\;</math> and <math>\;\;\frac{1}{y} \; g\left(\frac{1}{\sqrt{y}} \right)\;\; </math>
| |
| in the interval <math>0..\frac{1}{4^2}</math> give the following approximants, good to better than <math>10^{-16}</math> for <math>x \ge 4</math>:
| |
| | |
| <br>
| |
| <math>
| |
| \begin{array}{rcl}
| |
| f(x) &=& \dfrac{1}{x} \cdot \left(\frac{
| |
| \begin{array}{l}
| |
| 1 + 7.44437068161936700618 \cdot 10^2 \cdot x^{-2} + 1.96396372895146869801 \cdot 10^5 \cdot x^{-4} + 2.37750310125431834034 \cdot 10^7 \cdot x^{-6} \\
| |
| ~~~ + 1.43073403821274636888 \cdot 10^9 \cdot x^{-8} + 4.33736238870432522765 \cdot 10^{10} \cdot x^{-10} + 6.40533830574022022911 \cdot 10^{11} \cdot x^{-12} \\
| |
| ~~~ + 4.20968180571076940208 \cdot 10^{12} \cdot x^{-14} + 1.00795182980368574617 \cdot 10^{13} \cdot x^{-16} + 4.94816688199951963482 \cdot 10^{12} \cdot x^{-18} \\
| |
| ~~~ - 4.94701168645415959931 \cdot 10^{11} \cdot x^{-20}
| |
| \end{array}
| |
| }{
| |
| \begin{array}{l}
| |
| 1 + 7.46437068161927678031 \cdot 10^2 \cdot x^{-2} + 1.97865247031583951450 \cdot 10^5 \cdot x^{-4} + 2.41535670165126845144 \cdot 10^7 \cdot x^{-6} \\
| |
| ~~~ + 1.47478952192985464958 \cdot 10^9 \cdot x^{-8} + 4.58595115847765779830 \cdot 10^{10} \cdot x^{-10} + 7.08501308149515401563 \cdot 10^{11} \cdot x^{-12} \\
| |
| ~~~ + 5.06084464593475076774 \cdot 10^{12} \cdot x^{-14} + 1.43468549171581016479 \cdot 10^{13} \cdot x^{-16} + 1.11535493509914254097 \cdot 10^{13} \cdot x^{-18}
| |
| \end{array}
| |
| }
| |
| \right) \\
| |
| & &\\
| |
| g(x) &=& \dfrac{1}{x^2} \cdot \left(\frac{
| |
| \begin{array}{l}
| |
| 1 + 8.1359520115168615 \cdot 10^2 \cdot x^{-2} + 2.35239181626478200 \cdot 10^5 \cdot x^{-4} +3.12557570795778731 \cdot 10^7 \cdot x^{-6} \\
| |
| ~~~ + 2.06297595146763354 \cdot 10^9 \cdot x^{-8} + 6.83052205423625007 \cdot 10^{10} \cdot x^{-10} + 1.09049528450362786 \cdot 10^{12} \cdot x^{-12} \\
| |
| ~~~ + 7.57664583257834349 \cdot 10^{12} \cdot x^{-14} + 1.81004487464664575 \cdot 10^{13} \cdot x^{-16} + 6.43291613143049485 \cdot 10^{12} \cdot x^{-18} \\
| |
| ~~~ - 1.36517137670871689 \cdot 10^{12} \cdot x^{-20}
| |
| \end{array}
| |
| }{
| |
| \begin{array}{l}
| |
| 1 + 8.19595201151451564 \cdot 10^2 \cdot x^{-2} + 2.40036752835578777 \cdot 10^5 \cdot x^{-4} + 3.26026661647090822 \cdot 10^7 \cdot x^{-6} \\
| |
| ~~~ + 2.23355543278099360 \cdot 10^9 \cdot x^{-8} + 7.87465017341829930 \cdot 10^{10} \cdot x^{-10} + 1.39866710696414565 \cdot 10^{12} \cdot x^{-12} \\
| |
| ~~~ + 1.17164723371736605 \cdot 10^{13} \cdot x^{-14} + 4.01839087307656620 \cdot 10^{13} \cdot x^{-16} + 3.99653257887490811 \cdot 10^{13} \cdot x^{-18}
| |
| \end{array}
| |
| }
| |
| \right) \\
| |
| \end{array}
| |
| </math>
| |
| | |
| | |
| <br>
| |
| Here are text versions of the above suitable for copying into computer code (using x2 = x*x and y = 1/(x*x) where appropriate):
| |
| | |
| Si = x*(1. +
| |
| x2*(-4.54393409816329991e-2 +
| |
| x2*(1.15457225751016682e-3 +
| |
| x2*(-1.41018536821330254e-5 +
| |
| x2*(9.43280809438713025e-8 +
| |
| x2*(-3.53201978997168357e-10 +
| |
| x2*(7.08240282274875911e-13 +
| |
| x2*(-6.05338212010422477e-16))))))))
| |
| / (1. +
| |
| x2*(1.01162145739225565e-2 +
| |
| x2*(4.99175116169755106e-5 +
| |
| x2*(1.55654986308745614e-7 +
| |
| x2*(3.28067571055789734e-10 +
| |
| x2*(4.5049097575386581e-13 +
| |
| x2*(3.21107051193712168e-16)))))))
| |
|
| |
| Ci = 0.577215664901532861 + ln(x) +
| |
| x2*(-0.25 +
| |
| x2*(7.51851524438898291e-3 +
| |
| x2*(-1.27528342240267686e-4 +
| |
| x2*(1.05297363846239184e-6 +
| |
| x2*(-4.68889508144848019e-9 +
| |
| x2*(1.06480802891189243e-11 +
| |
| x2*(-9.93728488857585407e-15)))))))
| |
| / (1. +
| |
| x2*(1.1592605689110735e-2 +
| |
| x2*(6.72126800814254432e-5 +
| |
| x2*(2.55533277086129636e-7 +
| |
| x2*(6.97071295760958946e-10 +
| |
| x2*(1.38536352772778619e-12 +
| |
| x2*(1.89106054713059759e-15 +
| |
| x2*(1.39759616731376855e-18))))))))
| |
|
| |
| f = (1. +
| |
| y*(7.44437068161936700618e2 +
| |
| y*(1.96396372895146869801e5 +
| |
| y*(2.37750310125431834034e7 +
| |
| y*(1.43073403821274636888e9 +
| |
| y*(4.33736238870432522765e10 +
| |
| y*(6.40533830574022022911e11 +
| |
| y*(4.20968180571076940208e12 +
| |
| y*(1.00795182980368574617e13 +
| |
| y*(4.94816688199951963482e12 +
| |
| y*(-4.94701168645415959931e11)))))))))))
| |
| / (x*(1. +
| |
| y*(7.46437068161927678031e2 +
| |
| y*(1.97865247031583951450e5 +
| |
| y*(2.41535670165126845144e7 +
| |
| y*(1.47478952192985464958e9 +
| |
| y*(4.58595115847765779830e10 +
| |
| y*(7.08501308149515401563e11 +
| |
| y*(5.06084464593475076774e12 +
| |
| y*(1.43468549171581016479e13 +
| |
| y*(1.11535493509914254097e13)))))))))))
| |
|
| |
| g = y*(1. +
| |
| y*(8.1359520115168615e2 +
| |
| y*(2.35239181626478200e5 +
| |
| y*(3.12557570795778731e7 +
| |
| y*(2.06297595146763354e9 +
| |
| y*(6.83052205423625007e10 +
| |
| y*(1.09049528450362786e12 +
| |
| y*(7.57664583257834349e12 +
| |
| y*(1.81004487464664575e13 +
| |
| y*(6.43291613143049485e12 +
| |
| y*(-1.36517137670871689e12)))))))))))
| |
| / (1. +
| |
| y*(8.19595201151451564e2 +
| |
| y*(2.40036752835578777e5 +
| |
| y*(3.26026661647090822e7 +
| |
| y*(2.23355543278099360e9 +
| |
| y*(7.87465017341829930e10 +
| |
| y*(1.39866710696414565e12 +
| |
| y*(1.17164723371736605e13 +
| |
| y*(4.01839087307656620e13 +
| |
| y*(3.99653257887490811e13))))))))))
| |
| | |
| ==See also==
| |
| * [[Exponential integral]]
| |
| * [[Logarithmic integral]]
| |
| | |
| === Signal processing ===
| |
| * [[Gibbs phenomenon]]
| |
| * [[Ringing artifacts]]
| |
| | |
| == References ==
| |
| {{Reflist}}
| |
| *{{AS ref|5|231}}
| |
| *{{Citation | last1=Press | first1=WH | last2=Teukolsky | first2=SA | last3=Vetterling | first3=WT | last4=Flannery | first4=BP | year=2007 | title=Numerical Recipes: The Art of Scientific Computing | edition=3rd | publisher=Cambridge University Press | publication-place=New York | isbn=978-0-521-88068-8 | chapter=Section 6.8.2. Cosine and Sine Integrals | chapter-url=http://apps.nrbook.com/empanel/index.html#pg=300}}
| |
| *{{dlmf|id=6|title=Exponential, Logarithmic, Sine, and Cosine Integrals|first=N. M. |last=Temme}}
| |
| * {{ cite arXiv|
| |
| |first1=R. J.
| |
| |last1=Mathar
| |
| |eprint=0912.3844
| |
| |title=Numerical evaluation of the oscillatory integral over exp(''i{{pi}}x'')·''x''<sup>1/''x''</sup> between 1 and ∞
| |
| |year=2009
| |
| }}, Appendix B.
| |
| *[http://de2de.synechism.org/c5/sec58.pdf Sine Integral Taylor series proof.]
| |
| | |
| ==External links==
| |
| * http://mathworld.wolfram.com/SineIntegral.html
| |
| * {{springer|title=Integral sine|id=p/i051650}}
| |
| * {{springer|title=Integral cosine|id=p/i051370}}
| |
| | |
| {{DEFAULTSORT:Trigonometric Integral}}
| |
| [[Category:Trigonometry]]
| |
| [[Category:Special functions]]
| |
| [[Category:Special hypergeometric functions]]
| |
| [[Category:Integrals]]
| |
| | |
| [[ru:Интегральные тригонометрические функции]]
| |