|
|
Line 1: |
Line 1: |
| {{Dynamic list|date=October 2010}}
| | Adrianne Le is the logo my parents gave i but you can connect with me anything you really like. My house is now wearing South Carolina. Filing would be my day job but but soon I'll exist on my own. What me and my family appreciation is acting but I've can't make it all of my profession really. See what's new on individual website here: http://prometeu.net<br><br>Also visit my blog; [http://prometeu.net clash of clans bot] |
| | |
| This is a '''list of articles about [[number]]s''' (''not'' about [[Numeral (linguistics)|numerals]]).
| |
| | |
| == Rational numbers ==
| |
| {{main|Rational number}}
| |
| | |
| === Natural numbers ===
| |
| {{main|Natural number}}
| |
| {| rowpadding="3" style="text-align: right"
| |
| |-
| |
| | [[0 (number)|0]]
| |
| | [[1 (number)|1]]
| |
| | [[2 (number)|2]]
| |
| | [[3 (number)|3]]
| |
| | [[4 (number)|4]]
| |
| | [[5 (number)|5]]
| |
| | [[6 (number)|6]]
| |
| | [[7 (number)|7]]
| |
| | [[8 (number)|8]]
| |
| | [[9 (number)|9]]
| |
| |-
| |
| | [[10 (number)|10]]
| |
| | [[11 (number)|11]]
| |
| | [[12 (number)|12]]
| |
| | [[13 (number)|13]]
| |
| | [[14 (number)|14]]
| |
| | [[15 (number)|15]]
| |
| | [[16 (number)|16]]
| |
| | [[17 (number)|17]]
| |
| | [[18 (number)|18]]
| |
| | [[19 (number)|19]]
| |
| |-
| |
| | [[20 (number)|20]]
| |
| | [[21 (number)|21]]
| |
| | [[22 (number)|22]]
| |
| | [[23 (number)|23]]
| |
| | [[24 (number)|24]]
| |
| | [[25 (number)|25]]
| |
| | [[26 (number)|26]]
| |
| | [[27 (number)|27]]
| |
| | [[28 (number)|28]]
| |
| | [[29 (number)|29]]
| |
| |-
| |
| | [[30 (number)|30]]
| |
| | [[31 (number)|31]]
| |
| | [[32 (number)|32]]
| |
| | [[33 (number)|33]]
| |
| | [[34 (number)|34]]
| |
| | [[35 (number)|35]]
| |
| | [[36 (number)|36]]
| |
| | [[37 (number)|37]]
| |
| | [[38 (number)|38]]
| |
| | [[39 (number)|39]]
| |
| |-
| |
| | [[40 (number)|40]]
| |
| | [[41 (number)|41]]
| |
| | [[42 (number)|42]]
| |
| | [[43 (number)|43]]
| |
| | [[44 (number)|44]]
| |
| | [[45 (number)|45]]
| |
| | [[46 (number)|46]]
| |
| | [[47 (number)|47]]
| |
| | [[48 (number)|48]]
| |
| | [[49 (number)|49]]
| |
| |-
| |
| | [[50 (number)|50]]
| |
| | [[51 (number)|51]]
| |
| | [[52 (number)|52]]
| |
| | [[53 (number)|53]]
| |
| | [[54 (number)|54]]
| |
| | [[55 (number)|55]]
| |
| | [[56 (number)|56]]
| |
| | [[57 (number)|57]]
| |
| | [[58 (number)|58]]
| |
| | [[59 (number)|59]]
| |
| |-
| |
| | [[60 (number)|60]]
| |
| | [[61 (number)|61]]
| |
| | [[62 (number)|62]]
| |
| | [[63 (number)|63]]
| |
| | [[64 (number)|64]]
| |
| | [[65 (number)|65]]
| |
| | [[66 (number)|66]]
| |
| | [[67 (number)|67]]
| |
| | [[68 (number)|68]]
| |
| | [[69 (number)|69]]
| |
| |-
| |
| | [[70 (number)|70]]
| |
| | [[71 (number)|71]]
| |
| | [[72 (number)|72]]
| |
| | [[73 (number)|73]]
| |
| | [[74 (number)|74]]
| |
| | [[75 (number)|75]]
| |
| | [[76 (number)|76]]
| |
| | [[77 (number)|77]]
| |
| | [[78 (number)|78]]
| |
| | [[79 (number)|79]]
| |
| |-
| |
| | [[80 (number)|80]]
| |
| | [[81 (number)|81]]
| |
| | [[82 (number)|82]]
| |
| | [[83 (number)|83]]
| |
| | [[84 (number)|84]]
| |
| | [[85 (number)|85]]
| |
| | [[86 (number)|86]]
| |
| | [[87 (number)|87]]
| |
| | [[88 (number)|88]]
| |
| | [[89 (number)|89]]
| |
| |-
| |
| | [[90 (number)|90]]
| |
| | [[91 (number)|91]]
| |
| | [[92 (number)|92]]
| |
| | [[93 (number)|93]]
| |
| | [[94 (number)|94]]
| |
| | [[95 (number)|95]]
| |
| | [[96 (number)|96]]
| |
| | [[97 (number)|97]]
| |
| | [[98 (number)|98]]
| |
| | [[99 (number)|99]]
| |
| |-
| |
| | [[100 (number)|100]]
| |
| | [[101 (number)|101]]
| |
| | [[102 (number)|102]]
| |
| | [[103 (number)|103]]
| |
| | [[104 (number)|104]]
| |
| | [[105 (number)|105]]
| |
| | [[106 (number)|106]]
| |
| | [[107 (number)|107]]
| |
| | [[108 (number)|108]]
| |
| | [[109 (number)|109]]
| |
| |-
| |
| | [[110 (number)|110]]
| |
| | [[111 (number)|111]]
| |
| | [[112 (number)|112]]
| |
| | [[113 (number)|113]]
| |
| | [[114 (number)|114]]
| |
| | [[115 (number)|115]]
| |
| | [[116 (number)|116]]
| |
| | [[117 (number)|117]]
| |
| | [[118 (number)|118]]
| |
| | [[119 (number)|119]]
| |
| |-
| |
| | [[120 (number)|120]]
| |
| | [[121 (number)|121]]
| |
| | [[122 (number)|122]]
| |
| | [[123 (number)|123]]
| |
| | [[124 (number)|124]]
| |
| | [[125 (number)|125]]
| |
| | [[126 (number)|126]]
| |
| | [[127 (number)|127]]
| |
| | [[128 (number)|128]]
| |
| | [[129 (number)|129]]
| |
| |-
| |
| | [[130 (number)|130]]
| |
| | [[131 (number)|131]]
| |
| | [[132 (number)|132]]
| |
| | [[133 (number)|133]]
| |
| | [[134 (number)|134]]
| |
| | [[135 (number)|135]]
| |
| | [[136 (number)|136]]
| |
| | [[137 (number)|137]]
| |
| | [[138 (number)|138]]
| |
| | [[139 (number)|139]]
| |
| |-
| |
| | [[140 (number)|140]]
| |
| | [[141 (number)|141]]
| |
| | [[142 (number)|142]]
| |
| | [[143 (number)|143]]
| |
| | [[144 (number)|144]]
| |
| | [[145 (number)|145]]
| |
| | [[146 (number)|146]]
| |
| | [[147 (number)|147]]
| |
| | [[148 (number)|148]]
| |
| | [[149 (number)|149]]
| |
| |-
| |
| | [[150 (number)|150]]
| |
| | [[151 (number)|151]]
| |
| | [[152 (number)|152]]
| |
| | [[153 (number)|153]]
| |
| | [[154 (number)|154]]
| |
| | [[155 (number)|155]]
| |
| | [[156 (number)|156]]
| |
| | [[157 (number)|157]]
| |
| | [[158 (number)|158]]
| |
| | [[159 (number)|159]]
| |
| |-
| |
| | [[160 (number)|160]]
| |
| | [[161 (number)|161]]
| |
| | [[162 (number)|162]]
| |
| | [[163 (number)|163]]
| |
| | [[164 (number)|164]]
| |
| | [[165 (number)|165]]
| |
| | [[166 (number)|166]]
| |
| | [[167 (number)|167]]
| |
| | [[168 (number)|168]]
| |
| | [[169 (number)|169]]
| |
| |-
| |
| | [[170 (number)|170]]
| |
| | [[171 (number)|171]]
| |
| | [[172 (number)|172]]
| |
| | [[173 (number)|173]]
| |
| | [[174 (number)|174]]
| |
| | [[175 (number)|175]]
| |
| | [[176 (number)|176]]
| |
| | [[177 (number)|177]]
| |
| | [[178 (number)|178]]
| |
| | [[179 (number)|179]]
| |
| |-
| |
| | [[180 (number)|180]]
| |
| | [[181 (number)|181]]
| |
| | [[182 (number)|182]]
| |
| | [[183 (number)|183]]
| |
| | [[184 (number)|184]]
| |
| | [[185 (number)|185]]
| |
| | [[186 (number)|186]]
| |
| | [[187 (number)|187]]
| |
| | [[188 (number)|188]]
| |
| | [[189 (number)|189]]
| |
| |-
| |
| | [[190 (number)|190]]
| |
| | [[191 (number)|191]]
| |
| | [[192 (number)|192]]
| |
| | [[193 (number)|193]]
| |
| | [[194 (number)|194]]
| |
| | [[195 (number)|195]]
| |
| | [[196 (number)|196]]
| |
| | [[197 (number)|197]]
| |
| | [[198 (number)|198]]
| |
| | [[199 (number)|199]]
| |
| |-
| |
| | [[200 (number)|200]]
| |
| | [[201 (number)|201]]
| |
| | [[202 (number)|202]]
| |
| | [[203 (number)|203]]
| |
| | [[204 (number)|204]]
| |
| | [[205 (number)|205]]
| |
| | [[206 (number)|206]]
| |
| | [[207 (number)|207]]
| |
| | [[208 (number)|208]]
| |
| | [[209 (number)|209]]
| |
| |-
| |
| | [[210 (number)|210]]
| |
| | [[211 (number)|211]]
| |
| | [[212 (number)|212]]
| |
| | [[213 (number)|213]]
| |
| | [[214 (number)|214]]
| |
| | [[215 (number)|215]]
| |
| | [[216 (number)|216]]
| |
| | [[217 (number)|217]]
| |
| | [[218 (number)|218]]
| |
| | [[219 (number)|219]]
| |
| |-
| |
| |
| |
| |
| |
| | [[220 (number)|220]]
| |
| | [[230 (number)|230]]
| |
| | [[240 (number)|240]]
| |
| | [[250 (number)|250]]
| |
| | [[260 (number)|260]]
| |
| | [[270 (number)|270]]
| |
| | [[280 (number)|280]]
| |
| | [[290 (number)|290]]
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| | [[300 (number)|300]]
| |
| | [[400 (number)|400]]
| |
| | [[500 (number)|500]]
| |
| | [[600 (number)|600]]
| |
| | [[700 (number)|700]]
| |
| | [[800 (number)|800]]
| |
| | [[900 (number)|900]]
| |
| |-
| |
| |
| |
| | [[1000 (number)|1000]]
| |
| | [[2000 (number)|2000]]
| |
| | [[3000 (number)|3000]]
| |
| | [[4000 (number)|4000]]
| |
| | [[5000 (number)|5000]]
| |
| | [[6000 (number)|6000]]
| |
| | [[7000 (number)|7000]]
| |
| | [[8000 (number)|8000]]
| |
| | [[9000 (number)|9000]]
| |
| |-
| |
| |
| |
| | [[10000 (number)|10000]]
| |
| | [[20000 (number)|20000]]
| |
| | [[30000 (number)|30000]]
| |
| | [[40000 (number)|40000]]
| |
| | [[50000 (number)|50000]]
| |
| | [[60000 (number)|60000]]
| |
| | [[70000 (number)|70000]]
| |
| | [[80000 (number)|80000]]
| |
| | [[90000 (number)|90000]]
| |
| |-
| |
| |colspan=2| [[100000 (number)|100k–1M]]
| |
| |colspan=2| [[1000000 (number)|1M–10M]]
| |
| |colspan=2| [[10000000 (number)|10M–100M]]
| |
| |colspan=2| [[100000000 (number)|100M–1G]]
| |
| |colspan=2| [[1000000000 (number)|1G–10G]]
| |
| |-
| |
| |colspan=3| [[Orders of magnitude (numbers)|Larger numbers]]
| |
| |}
| |
| | |
| === Powers of ten (scientific notation) ===
| |
| {{Main|Orders of magnitude (numbers)}}
| |
| | |
| === Integers ===
| |
| {{main|Integer}}
| |
| | |
| ==== Notable integers ====
| |
| Other numbers that are notable for their mathematical properties or cultural meanings include:
| |
| <!-- Note that this is a list of OTHER notable integers. Please do NOT include integers like 13 or 42 which ALREADY appear in the table above. -->
| |
| | |
| * [[−40 (number)|−40]], the equal point in the Fahrenheit and Celsius scales.
| |
| * [[−1 (number)|−1]]
| |
| * [[10 (number)|10]], the [[decimal|number base]] for most modern counting systems.
| |
| * [[60 (number)|60]], the [[sexagesimal|number base]] for some ancient counting systems and the basis for many modern measuring systems.
| |
| * [[255 (number)|255]], 2<sup>8</sup>−1, a [[Mersenne number]] and the smallest [[perfect totient number]] that is neither a power of three nor thrice a prime. It is also the largest number that can be represented using an [[8-bit]] unsigned [[Integer (computer science)|integer]].
| |
| * [[496 (number)|496]], a [[perfect number]].
| |
| * [[666 (number)|666]], commonly known as the number of the beast.
| |
| * [[786 (number)|786]], regarded as sacred in the Muslim [[Abjad numerals|Abjad numerology]].
| |
| * [[1729 (number)|1729]], a [[taxicab number]]; the smallest positive integer that can be written as the sum of two positive cubes in two different ways. Also known as the [[Hardy-Ramanujan number]]<ref>http://mathworld.wolfram.com/Hardy-RamanujanNumber.html</ref>
| |
| * [[65535 (number)|65535]], 2<sup>16</sup>-1, the maximum value of a [[16-bit]] unsigned integer.
| |
| * [[142857 (number)|142857]], the smallest [[base 10]] [[cyclic number]].
| |
| * [[2147483647]], 2<sup>31</sup>−1, the maximum value of a [[32-bit]] signed [[Integer (computer science)|integer]].
| |
| * [[9814072356 (number)|9814072356]], the largest [[perfect power]] that contains no repeated digits in base ten.
| |
| * [[9223372036854775807]], 2<sup>63</sup>−1, the maximum value of a [[64-bit]] signed [[Integer (computer science)|integer]].
| |
| | |
| ==== Named integers ====
| |
| | |
| * [[Googol]] and [[googolplex]]
| |
| * [[Graham's number]]
| |
| * [[Moser's number]]
| |
| * [[Shannon number]]
| |
| * [[Hardy–Ramanujan number]]
| |
| * [[Skewes' number]]
| |
| * [[Number of the Beast]]
| |
| * [[6174 (number)|Kaprekar's constant]]
| |
| | |
| | |
| === Prime numbers ===
| |
| {{Main|Prime numbers}}
| |
| A prime number is a positive integer which has exactly two [[divisor]]s: one and itself.
| |
| | |
| {| class="simple" cellpadding="5"
| |
| | [[2 (number)|2]] || [[3 (number)|3]] || [[5 (number)|5]] || [[7 (number)|7]] || [[11 (number)|11]] || [[13 (number)|13]] || [[17 (number)|17]] || [[19 (number)|19]] || [[23 (number)|23]] || [[29 (number)|29]]
| |
| |-
| |
| | [[31 (number)|31]] || [[37 (number)|37]] || [[41 (number)|41]] || [[43 (number)|43]] || [[47 (number)|47]] || [[53 (number)|53]] || [[59 (number)|59]] || [[61 (number)|61]] || [[67 (number)|67]] || [[71 (number)|71]]
| |
| |-
| |
| | [[73 (number)|73]] || [[79 (number)|79]] || [[83 (number)|83]] || [[89 (number)|89]] || [[97 (number)|97]] ||[[101 (number)|101]] ||[[103 (number)|103]] ||[[107 (number)|107]] ||[[109 (number)|109]] ||[[113 (number)|113]]
| |
| |-
| |
| |[[127 (number)|127]] ||[[131 (number)|131]] ||[[137 (number)|137]] ||[[139 (number)|139]] ||[[149 (number)|149]] ||[[151 (number)|151]] ||[[157 (number)|157]] ||[[163 (number)|163]] ||[[167 (number)|167]]||[[173 (number)|173]]
| |
| |-
| |
| |[[179 (number)|179]]||[[181 (number)|181]] ||[[191 (number)|191]]||[[193 (number)|193]] ||[[197 (number)|197]] ||[[199 (number)|199]] ||[[211 (number)|211]] ||[[223 (number)|223]] ||[[227 (number)|227]]||[[229 (number)|229]]
| |
| |-
| |
| |[[233 (number)|233]] ||[[239 (number)|239]] ||[[241 (number)|241]] ||[[251 (number)|251]] ||[[257 (number)|257]] ||[[263 (number)|263]] ||[[269 (number)|269]] ||[[271 (number)|271]] ||[[277 (number)|277]] ||[[281 (number)|281]]
| |
| |-
| |
| |[[283 (number)|283]] ||[[293 (number)|293]] ||[[307 (number)|307]] ||[[311 (number)|311]] ||[[313 (number)|313]] ||[[317 (number)|317]] ||[[331 (number)|331]] ||[[337 (number)|337]] ||[[347 (number)|347]] ||[[349 (number)|349]]
| |
| |-
| |
| |[[353 (number)|353]] ||[[359 (number)|359]] ||[[367 (number)|367]] ||[[373 (number)|373]] ||[[379 (number)|379]] ||[[383 (number)|383]] ||[[389 (number)|389]] ||[[397 (number)|397]] ||[[401 (number)|401]] ||[[409 (number)|409]]
| |
| |-
| |
| |[[419 (number)|419]] ||[[421 (number)|421]] ||[[431 (number)|431]] ||[[433 (number)|433]] ||[[439 (number)|439]] ||[[443 (number)|443]] ||[[449 (number)|449]] ||[[457 (number)|457]] ||[[461 (number)|461]] ||[[463 (number)|463]]
| |
| |-
| |
| |[[467 (number)|467]] ||[[479 (number)|479]] ||[[487 (number)|487]] ||[[491 (number)|491]] ||[[499 (number)|499]] ||[[503 (number)|503]] ||[[509 (number)|509]] ||[[521 (number)|521]] ||[[523 (number)|523]] ||[[541 (number)|541]]
| |
| |}
| |
| | |
| === Highly composite numbers ===
| |
| {{main|Highly composite number}}
| |
| | |
| A highly composite number (HCN) is a positive integer with more divisors than any smaller positive integer. They are often used in [[geometry]], grouping and time measurement.
| |
| | |
| The first 20 highly composite numbers (the seven values with more divisors than any lesser number than twice itself are in '''bold'''):
| |
| | |
| '''[[1 (number)|1]]''',
| |
| '''[[2 (number)|2]]''',
| |
| [[4 (number)|4]],
| |
| '''[[6 (number)|6]]''',
| |
| '''[[12 (number)|12]]''',
| |
| [[24 (number)|24]],
| |
| [[36 (number)|36]],
| |
| [[48 (number)|48]],
| |
| '''[[60 (number)|60]]''',
| |
| [[120 (number)|120]],
| |
| [[180 (number)|180]],
| |
| [[240 (number)|240]],
| |
| '''[[360 (number)|360]]''',
| |
| [[720 (number)|720]],
| |
| [[840 (number)|840]],
| |
| [[1260 (number)|1 260]],
| |
| [[1680 (number)|1 680]],
| |
| '''[[2520 (number)|2 520]]''',
| |
| [[5040 (number)|5 040]],
| |
| [[7560 (number)|7 560]]
| |
| | |
| === Perfect numbers ===
| |
| {{main|Perfect number}}
| |
| | |
| A perfect number is an integer that is the sum of its positive proper divisors (all divisors except itself).
| |
| | |
| The first 10 perfect numbers:
| |
| | |
| {|
| |
| |-
| |
| ! 1|| align="right" |[[6 (number)|6]]
| |
| |-
| |
| ! 2|| align="right" |[[28 (number)|28]]
| |
| |-
| |
| ! 3|| align="right" |[[496 (number)|496]]
| |
| |-
| |
| ! 4|| align="right" |[[8128 (number)|8 128]]
| |
| |-
| |
| ! 5|| align="right" |33 550 336
| |
| |-
| |
| ! 6|| align="right" |8 589 869 056
| |
| |-
| |
| ! 7|| align="right" |137 438 691 328
| |
| |-
| |
| ! 8|| align="right" |2 305 843 008 139 952 128
| |
| |-
| |
| ! 9|| align="right" |2 658 455 991 569 831 744 654 692 615 953 842 176
| |
| |-
| |
| ! 10|| align="right" | 191 561 942 608 236 107 294 793 378 084 303 638 130 997 321 548 169 216
| |
| |}
| |
| | |
| === Cardinal numbers ===
| |
| {{main|cardinal number}}
| |
| | |
| In the following tables, '''[and]''' indicates that the word ''and'' is used in some [[dialect]]s (such as [[British English]]), and omitted in other dialects (such as [[American English]]).
| |
| | |
| ==== Small numbers ====
| |
| This table demonstrates the standard English construction of small cardinal numbers up to one hundred million—names for which all variants of English agree.
| |
| {| class="wikitable sortable"
| |
| |-
| |
| ! Value !! Name !! Alternate names, and names for sets of the given size
| |
| |-
| |
| | align="right" | 0 || [[Names for the number 0|Zero]] || aught, cipher, cypher, donut, goose egg, [[Tennis score#Scoring a game|love]], nada, naught, nil, none, nought, nowt, null, ought, oh, squat, zed, zilch, zip
| |
| |-
| |
| | align="right" | 1 || One || ace, individual, single, singleton, unary, unit, unity
| |
| |-
| |
| | align="right" | 2 || Two || binary, [[brace (grouping)|brace]], couple, couplet, distich, deuce, double, doubleton, duad, duality, duet, duo, dyad, pair, span, twain, twin, twosome, yoke
| |
| |-
| |
| | align="right" | 3 || Three || deuce-ace, leash, set, tercet, ternary, ternion, terzetto, threesome, tierce, trey, triad, trine, trinity, trio, triplet, troika, hat-trick
| |
| |-
| |
| | align="right" | 4 || Four || foursome, quadruplet, quatern, quaternary, quaternion, quaternity, quartet, tetrad
| |
| |-
| |
| | align="right" | 5 || Five || cinque, fin, fivesome, pentad, quint, quintet, quintuplet
| |
| |-
| |
| | align="right" | 6 || Six || half dozen, hexad, sestet, sextet, sextuplet, sise
| |
| |-
| |
| | align="right" | 7 || Seven || heptad, septet, septuple
| |
| |-
| |
| | align="right" | 8 || Eight || octad, octave, octet, octonary, octuplet, ogdoad
| |
| |-
| |
| | align="right" | 9 || Nine || ennead
| |
| |-
| |
| | align="right" | 10 || Ten || deca, decade
| |
| |-
| |
| | align="right" | 11 || Eleven || onze, ounze, ounce
| |
| |-
| |
| | align="right" | 12 || Twelve || dozen
| |
| |-
| |
| | align="right" | 13 || Thirteen || [[baker's dozen]], long dozen<ref name="ShipAssistant">[http://books.google.com.au/books?id=cDkSAAAAYAAJ&pg=PA417&lpg=PA417&dq=%22long+score%22+21&source=bl&ots=uU-HfR9K0J&sig=YhXx-SlxYVF38x27a_X9Ia7ncR8&hl=en&ei=9vjSTbPvM8ezrAeys6jECQ&sa=X&oi=book_result&ct=result&resnum=1&ved=0CBgQ6AEwAA#v=onepage&q&f=false The shipmaster's assistant, and commercial digest]</ref>
| |
| |-
| |
| | align="right" | 14 || Fourteen
| |
| |-
| |
| | align="right" | 15 || Fifteen
| |
| |-
| |
| | align="right" | 16 || Sixteen
| |
| |-
| |
| | align="right" | 17 || Seventeen
| |
| |-
| |
| | align="right" | 18 || Eighteen
| |
| |-
| |
| | align="right" | 19 || Nineteen
| |
| |-
| |
| | align="right" | 20 || Twenty || score
| |
| |-
| |
| | align="right" | 21 || Twenty-one || long score<ref name="ShipAssistant" />
| |
| |-
| |
| | align="right" | 22 || Twenty-two || Deuce-deuce
| |
| |-
| |
| | align="right" | 23 || Twenty-three
| |
| |-
| |
| | align="right" | 24 || Twenty-four || two dozen
| |
| |-
| |
| | align="right" | 25 || Twenty-five
| |
| |-
| |
| | align="right" | 26 || Twenty-six
| |
| |-
| |
| | align="right" | 27 || Twenty-seven
| |
| |-
| |
| | align="right" | 28 || Twenty-eight
| |
| |-
| |
| | align="right" | 29 || Twenty-nine
| |
| |-
| |
| | align="right" | 30 || Thirty
| |
| |-
| |
| | align="right" | 31 || Thirty-one
| |
| |-
| |
| | align="right" | 40 || Forty || two-score
| |
| |-
| |
| | align="right" | 50 || Fifty || half-century
| |
| |-
| |
| | align="right" | 60 || Sixty || three-score
| |
| |-
| |
| | align="right" | 70 || Seventy || three-score and ten
| |
| |-
| |
| | align="right" | 80 || Eighty || four-score
| |
| |-
| |
| | align="right" | 87 || Eighty-seven || [[Gettysburg Address|four-score and seven]]
| |
| |-
| |
| | align="right" | 90 || Ninety
| |
| |-
| |
| | align="right" | 100 || One hundred || centred, century, ton, short hundred
| |
| |-
| |
| | align="right" | 101 || One hundred [and] one
| |
| |-
| |
| | align="right" | 110 || One hundred [and] ten
| |
| |-
| |
| | align="right" | 111 || One hundred [and] eleven
| |
| |-
| |
| | align="right" | 120 || One hundred [and] twenty || long hundred,<ref name="ShipAssistant" /> great hundred, ''(obsolete)'' hundred
| |
| |-
| |
| | align="right" | 121 || One hundred [and] twenty-one
| |
| |-
| |
| | align="right" | 144 || One hundred [and] forty-four || [[Gross (unit)|gross]], dozen dozen, small gross
| |
| |-
| |
| | align="right" | 169 || One hundred [and] sixty-nine || baker's gross{{Citation needed|date=May 2011}}
| |
| |-
| |
| | align="right" | 200 || Two hundred
| |
| |-
| |
| | align="right" | 300 || Three hundred
| |
| |-
| |
| | align="right" | 400 || Four hundred
| |
| |-
| |
| | align="right" | 500 || Five hundred
| |
| |-
| |
| | align="right" | 600 || Six hundred
| |
| |-
| |
| | align="right" | 666 || Six hundred [and] sixty-six || [[Number of the Beast]]
| |
| |-
| |
| | align="right" | 700 || Seven hundred
| |
| |-
| |
| | align="right" | 777 || Seven hundred [and] seventy-seven || Number of Luck
| |
| |-
| |
| | align="right" | 800 || Eight hundred
| |
| |-
| |
| | align="right" | 900 || Nine hundred
| |
| |-
| |
| | align="right" | 1 000 || One thousand || chiliad, grand, G, thou, yard, kilo, k, [[millennium]]
| |
| |-
| |
| | align="right" | 1 001 || One thousand [and] one
| |
| |-
| |
| | align="right" | 1 010 || One thousand [and] ten
| |
| |-
| |
| | align="right" | 1 011 || One thousand [and] eleven
| |
| |-
| |
| | align="right" | 1 024 || One thousand [and] twenty-four || kibi or kilo in [[computing]], see [[binary prefix]] (kilo is shortened to K, Kibi to Ki)
| |
| |-
| |
| | align="right" | 1 100 || One thousand one hundred || Eleven hundred
| |
| |-
| |
| | align="right" | 1 101 || One thousand one hundred [and] one
| |
| |-
| |
| | align="right" | 1 728 || One thousand seven hundred [and] twenty-eight || great gross, long gross, dozen gross
| |
| |-
| |
| | align="right" | 2 000 || Two thousand
| |
| |-
| |
| | align="right" | 3 000 || Three thousand
| |
| |-
| |
| | align="right" | 10 000 || Ten thousand || [[myriad]], [[Myriad#Sinosphere|wan]] (China)
| |
| |-
| |
| | align="right" | 100 000 || One hundred thousand || [[lakh]]
| |
| |-
| |
| | align="right" | 500 000 || Five hundred thousand || [[crore]] (Iranian)
| |
| |-
| |
| | align="right" | 1 000 000 || One million || Mega, meg, mil, (often shortened to M)
| |
| |-
| |
| | align="right" | 1 048 576 || One million forty-eight thousand five hundred [and] seventy-six || Mibi or Mega in [[computing]], see [[binary prefix]] (Mega is shortened to M, Mibi to Mi)
| |
| |-
| |
| | align="right" | 10 000 000 || Ten million || [[crore]] (Bhartia)
| |
| |-
| |
| | align="right" | 100 000 000 || One hundred million || [[Myriad#Sinosphere|yi]] (China)
| |
| |-
| |
| |}
| |
| | |
| ==== English names for powers of 10 ====
| |
| This table compares the English names of cardinal numbers according to various American, British, and Continental European conventions. See [[English numerals]] or [[names of large numbers]] for more information on naming numbers.
| |
| {| class="wikitable"
| |
| |- style="text-align: center"
| |
| ! !! [[long and short scales|Short scale]] !! colspan="2" | [[long and short scales|Long scale]] !! colspan="2" | Power
| |
| |- style="background: #eeeeff; text-align: center"
| |
| ! Value !! American!! British<br> ([[Nicolas Chuquet]]) !! Continental European <br> ([[Jacques Peletier du Mans]]) !! of a thousand !! of a million
| |
| |-
| |
| | 10<sup>0</sup> || colspan=3 align="center"| One || 1000<sup>−1+1</sup> || 1000000<sup>0</sup>
| |
| |-
| |
| | 10<sup>1</sup> || colspan=3 align="center"| Ten || ||
| |
| |-
| |
| | 10<sup>2</sup> || colspan=3 align="center"| Hundred || ||
| |
| |-
| |
| | 10<sup>3</sup> || colspan=3 align="center"| Thousand || 1000<sup>0+1</sup> || 1000000<sup>0.5</sup>
| |
| |-
| |
| | 10<sup>6</sup> || colspan=3 align="center"| Million || 1000<sup>1+1</sup> || 1000000<sup>1</sup>
| |
| |-
| |
| | 10<sup>9</sup> || Billion || Thousand million || Milliard || 1000<sup>2+1</sup> || 1000000<sup>1.5</sup>
| |
| |-
| |
| | 10<sup>12</sup> || Trillion || colspan=2 align="center"| Billion || 1000<sup>3+1</sup> || 1000000<sup>2</sup>
| |
| |-
| |
| | 10<sup>15</sup> || Quadrillion || Thousand billion || Billiard || 1000<sup>4+1</sup> || 1000000<sup>2.5</sup>
| |
| |-
| |
| | 10<sup>18</sup> || Quintillion || colspan=2 align="center"| Trillion || 1000<sup>5+1</sup> || 1000000<sup>3</sup>
| |
| |-
| |
| | 10<sup>21</sup> || Sextillion || Thousand trillion || Trilliard || 1000<sup>6+1</sup> || 1000000<sup>3.5</sup>
| |
| |-
| |
| | 10<sup>24</sup> || Septillion || colspan=2 align="center"| Quadrillion || 1000<sup>7+1</sup> || 1000000<sup>4</sup>
| |
| |-
| |
| | 10<sup>27</sup> || Octillion || Thousand quadrillion || Quadrilliard || 1000<sup>8+1</sup> || 1000000<sup>4.5</sup>
| |
| |-
| |
| | 10<sup>30</sup> || Nonillion || colspan=2 align="center"| Quintillion || 1000<sup>9+1</sup> || 1000000<sup>5</sup>
| |
| |-
| |
| | 10<sup>33</sup> || Decillion || Thousand quintillion || Quintilliard || 1000<sup>10+1</sup> || 1000000<sup>5.5</sup>
| |
| |-
| |
| | 10<sup>36</sup> || Undecillion || colspan=2 align="center"| Sextillion || 1000<sup>11+1</sup> || 1000000<sup>6</sup>
| |
| |-
| |
| | 10<sup>39</sup> || Duodecillion || Thousand sextillion || Sextilliard || 1000<sup>12+1</sup> || 1000000<sup>6.5</sup>
| |
| |-
| |
| | 10<sup>42</sup> || Tredecillion || colspan=2 align="center"| Septillion || 1000<sup>13+1</sup> || 1000000<sup>7</sup>
| |
| |-
| |
| | 10<sup>45</sup> || Quattuordecillion || Thousand septillion || Septilliard || 1000<sup>14+1</sup> || 1000000<sup>7.5</sup>
| |
| |-
| |
| | 10<sup>48</sup> || Quindecillion || colspan=2 align="center"| Octillion || 1000<sup>15+1</sup> || 1000000<sup>8</sup>
| |
| |-
| |
| | 10<sup>51</sup> || Sexdecillion || Thousand octillion || Octilliard || 1000<sup>16+1</sup> || 1000000<sup>8.5</sup>
| |
| |-
| |
| | 10<sup>54</sup> || Septendecillion || colspan=2 align="center"| Nonillion || 1000<sup>17+1</sup> || 1000000<sup>9</sup>
| |
| |-
| |
| | 10<sup>57</sup> || Octodecillion || Thousand nonillion || Nonilliard || 1000<sup>18+1</sup> || 1000000<sup>9.5</sup>
| |
| |-
| |
| | 10<sup>60</sup> || Novemdecillion || colspan=2 align="center"| Decillion || 1000<sup>19+1</sup> || 1000000<sup>10</sup>
| |
| |-
| |
| | 10<sup>63</sup> || Vigintillion || Thousand decillion || Decilliard || 1000<sup>20+1</sup> || 1000000<sup>10.5</sup>
| |
| |-
| |
| | 10<sup>66</sup> || Unvigintillion || colspan=2 align="center"| Undecillion || 1000<sup>21+1</sup> || 1000000<sup>11</sup>
| |
| |-
| |
| | 10<sup>69</sup> || Duovigintillion || Thousand undecillion || Undecilliard || 1000<sup>22+1</sup> || 1000000<sup>11.5</sup>
| |
| |-
| |
| | 10<sup>72</sup> || Trevigintillion || colspan=2 align="center"| Duodecillion || 1000<sup>23+1</sup> || 1000000<sup>12</sup>
| |
| |-
| |
| | 10<sup>75</sup> || Quattuorvigintillion || Thousand duodecillion || Duodecilliard || 1000<sup>24+1</sup> || 1000000<sup>12.5</sup>
| |
| |-
| |
| | 10<sup>78</sup> || Quinvigintillion || colspan=2 align="center"| Tredecillion || 1000<sup>25+1</sup> || 1000000<sup>13</sup>
| |
| |-
| |
| | ... || ... || colspan=2 align="center"| ... || ... || ...
| |
| |-
| |
| | 10<sup>93</sup> || Trigintillion || Thousand quindecillion || Quindecilliard || 1000<sup>30+1</sup> || 1000000<sup>15.5</sup>
| |
| |-
| |
| | ... || ... || colspan=2 align="center"| ... || ... || ...
| |
| |-
| |
| | 10<sup>120</sup> || Novemtrigintillion || colspan=2 align="center"| Vigintillion || 1000<sup>39+1</sup> || 1000000<sup>20</sup>
| |
| |-
| |
| | 10<sup>123</sup> || Quadragintillion || Thousand vigintillion || Vigintilliard || 1000<sup>40+1</sup> || 1000000<sup>20.5</sup>
| |
| |-
| |
| | ... || ... || colspan=2 align="center"| ... || ... || ...
| |
| |-
| |
| | 10<sup>153</sup> || Quinquagintillion || Thousand quinvigintillion || Quinvigintilliard || 1000<sup>50+1</sup> || 1000000<sup>25.5</sup>
| |
| |-
| |
| | ... || ... || colspan=2 align="center"| ... || ... || ...
| |
| |-
| |
| | 10<sup>180</sup> || Novemquinquagintillion || colspan=2 align="center"| Trigintillion || 1000<sup>59+1</sup> || 1000000<sup>30</sup>
| |
| |-
| |
| | 10<sup>183</sup> || Sexagintillion || Thousand trigintillion || Trigintilliard || 1000<sup>60+1</sup> || 1000000<sup>30.5</sup>
| |
| |-
| |
| | ... || ... || colspan=2 align="center"| ... || ... || ...
| |
| |-
| |
| | 10<sup>213</sup> || Septuagintillion || Thousand quintrigintillion || Quintrigintilliard || 1000<sup>70+1</sup> || 1000000<sup>35.5</sup>
| |
| |-
| |
| | ... || ... || colspan=2 align="center"| ... || ... || ...
| |
| |-
| |
| | 10<sup>240</sup> || Novemseptuagintillion || colspan=2 align="center"| Quadragintillion || 1000<sup>79+1</sup> || 1000000<sup>40</sup>
| |
| |-
| |
| | 10<sup>243</sup> || Octogintillion || Thousand quadragintillion || Quadragintilliard || 1000<sup>80+1</sup> || 1000000<sup>40.5</sup>
| |
| |-
| |
| | ... || ... || colspan=2 align="center"| ... || ... || ...
| |
| |-
| |
| | 10<sup>273</sup> || Nonagintillion || Thousand quinquadragintillion || Quinquadragintilliard || 1000<sup>90+1</sup> || 1000000<sup>45.5</sup>
| |
| |-
| |
| | ... || ... || colspan=2 align="center"| ... || ... || ...
| |
| |-
| |
| | 10<sup>300</sup> || Novemnonagintillion || colspan=2 align="center"| Quinquagintillion || 1000<sup>99+1</sup> || 1000000<sup>50</sup>
| |
| |-
| |
| | 10<sup>303</sup> || [[Centillion]] || Thousand quinquagintillion || Quinquagintilliard || 1000<sup>100+1</sup> || 1000000<sup>50.5</sup>
| |
| |-
| |
| | ... || || colspan=2 align="center"| ... || ... || ...
| |
| |-
| |
| | 10<sup>360</sup> || || colspan=2 align="center"| Sexagintillion || 1000<sup>119+1</sup> || 1000000<sup>60</sup>
| |
| |-
| |
| | 10<sup>420</sup> || || colspan=2 align="center"| Septuagintillion || 1000<sup>139+1</sup> || 1000000<sup>70</sup>
| |
| |-
| |
| | 10<sup>480</sup> || || colspan=2 align="center"| Octogintillion || 1000<sup>159+1</sup> || 1000000<sup>80</sup>
| |
| |-
| |
| | 10<sup>540</sup> || || colspan=2 align="center"| Nonagintillion || 1000<sup>179+1</sup> || 1000000<sup>90</sup>
| |
| |-
| |
| | 10<sup>600</sup> || || colspan=2 align="center"| [[Centillion]] || 1000<sup>199+1</sup> || 1000000<sup>100</sup>
| |
| |-
| |
| | 10<sup>603</sup> || Ducentillion || Thousand centillion || [[Centilliard]] || 1000<sup>200+1</sup> || 1000000<sup>100.5</sup>
| |
| |}
| |
| | |
| There is no consistent and widely accepted way to extend cardinals beyond [[centillion]] ([[centilliard]]).
| |
| | |
| ==== Proposed systematic names for powers of 10 ====
| |
| ===== {{anchor|Myriad system}} Myriad system =====
| |
| <!-- This Anchor tag serves to provide a permanent target for incoming section links. Please do not modify it, even if you modify the section title. -->
| |
| [[Knuth -yllion|Proposed by Donald E. Knuth]]:
| |
| {| class="wikitable"
| |
| |-
| |
| ! Value !! Name !! Notation
| |
| |-
| |
| | 10<sup>0</sup>
| |
| | align="center" | One
| |
| | 1
| |
| |-
| |
| | 10<sup>1</sup>
| |
| | align="center" | Ten
| |
| | 10
| |
| |-
| |
| | 10<sup>2</sup>
| |
| | align="center" | Hundred
| |
| | 100
| |
| |-
| |
| | 10<sup>3</sup>
| |
| | align="center" | Ten hundred
| |
| | 1000
| |
| |-
| |
| | 10<sup>4</sup>
| |
| | align="center" | Myriad
| |
| | 1,0000
| |
| |-
| |
| | 10<sup>5</sup>
| |
| | align="center" | Ten myriad
| |
| | 10,0000
| |
| |-
| |
| | 10<sup>6</sup>
| |
| | align="center" | Hundred myriad
| |
| | 100,0000
| |
| |-
| |
| | 10<sup>7</sup>
| |
| | align="center" | Ten hundred myriad
| |
| | 1000,0000
| |
| |-
| |
| | 10<sup>8</sup>
| |
| | align="center" | Myllion
| |
| | 1;0000,0000
| |
| |-
| |
| | 10<sup>12</sup>
| |
| | align="center" | Myriad myllion
| |
| | 1,0000;0000,0000
| |
| |-
| |
| | 10<sup>16</sup>
| |
| | align="center" | Byllion
| |
| | 1:0000,0000;0000,0000
| |
| |-
| |
| | 10<sup>24</sup>
| |
| | align="center" | Myllion byllion
| |
| | 1;0000,0000:0000,0000;0000,0000
| |
| |-
| |
| | 10<sup>32</sup>
| |
| | align="center" | Tryllion
| |
| | 1'0000,0000;0000,0000:0000,0000;0000,0000
| |
| |-
| |
| | 10<sup>64</sup>
| |
| | align="center" | Quadryllion
| |
| | 1'0000,0000;0000,0000:0000,0000;0000,0000'0000,0000;0000,0000:0000,0000;0000,0000
| |
| |-
| |
| | 10<sup>128</sup>
| |
| | align="center" | Quintyllion
| |
| |-
| |
| | 10<sup>256</sup>
| |
| | align="center" | Sextyllion
| |
| |-
| |
| | 10<sup>512</sup>
| |
| | align="center" | Septyllion
| |
| |-
| |
| | 10<sup>1024</sup>
| |
| | align="center" | Octyllion
| |
| |-
| |
| | 10<sup>2048</sup>
| |
| | align="center" | Nonyllion
| |
| |-
| |
| | 10<sup>4096</sup>
| |
| | align="center" | Decyllion
| |
| |-
| |
| | 10<sup>8192</sup>
| |
| | align="center" | Undecyllion
| |
| |-
| |
| | 10<sup>16,384</sup>
| |
| | align="center" | Duodecyllion
| |
| |-
| |
| | 10<sup>32,768</sup>
| |
| | align="center" | Tredecyllion
| |
| |-
| |
| | 10<sup>65,536</sup>
| |
| | align="center" | Quattuordecyllion
| |
| |-
| |
| | 10<sup>131,072</sup>
| |
| | align="center" | Quindecyllion
| |
| |-
| |
| | 10<sup>262,144</sup>
| |
| | align="center" | Sexdecyllion
| |
| |-
| |
| | 10<sup>524,288</sup>
| |
| | align="center" | Septendecyllion
| |
| |-
| |
| | 10<sup>1,048,576</sup>
| |
| | align="center" | Octodecyllion
| |
| |-
| |
| | 10<sup>2,097,152</sup>
| |
| | align="center" | Novemdecyllion
| |
| |-
| |
| | <math>{10}^{\,\! 4\cdot 2^{20}}</math>
| |
| | align="center" | Vigintyllion
| |
| |-
| |
| | <math>{10}^{\,\! 4\cdot 2^{30}}</math>
| |
| | align="center" | Trigintyllion
| |
| |-
| |
| | <math>{10}^{\,\! 4 \cdot 2^{40}}</math>
| |
| | align="center" | Quadragintyllion
| |
| |-
| |
| | <math>{10}^{\,\! 4 \cdot 2^{50}}</math>
| |
| | align="center" | Quinquagintyllion
| |
| |-
| |
| | <math>{10}^{\,\! 4 \cdot 2^{60}}</math>
| |
| | align="center" | Sexagintyllion
| |
| |-
| |
| | <math>{10}^{\,\! 4 \cdot 2^{70}}</math>
| |
| | align="center" | Septuagintyllion
| |
| |-
| |
| | <math>{10}^{\,\! 4 \cdot 2^{80}}</math>
| |
| | align="center" | Octogintyllion
| |
| |-
| |
| | <math>{10}^{\,\! 4 \cdot 2^{90}}</math>
| |
| | align="center" | Nonagintyllion
| |
| |-
| |
| | <math>{10}^{\,\! 4 \cdot 2^{100}}</math>
| |
| | align="center" | Centyllion
| |
| |-
| |
| | <math>{10}^{\,\! 4 \cdot 2^{1000}}</math>
| |
| | align="center" | Millyllion
| |
| |-
| |
| | <math>{10}^{\,\! 4 \cdot 2^{10,000}}</math>
| |
| | align="center" | Myryllion
| |
| |-
| |
| |}
| |
| | |
| ===== SI-derived =====
| |
| {| class="wikitable"
| |
| |-
| |
| ! Value !! 1000<sup>m</sup> !! [[SI prefix]] !! Name !! [[Binary prefix]] !! 1024<sup>m</sup>=2<sup>10m</sup> !! Value
| |
| |-
| |
| | align="right" | 1 000 || 1000<sup>1</sup> || k || [[Kilo-|Kilo]] || Ki || 1024<sup>1</sup> || align="right" | 1 024
| |
| |-
| |
| | align="right" | 1 000 000 || 1000<sup>2</sup> || M || [[Mega-|Mega]] || Mi || 1024<sup>2</sup> || align="right" | 1 048 576
| |
| |-
| |
| | align="right" | 1 000 000 000 || 1000<sup>3</sup> || G || [[Giga]] || Gi || 1024<sup>3</sup> || align="right" | 1 073 741 824
| |
| |-
| |
| | align="right" | 1 000 000 000 000 || 1000<sup>4</sup> || T || [[Tera-|Tera]] || Ti || 1024<sup>4</sup> || align="right" | 1 099 511 627 776
| |
| |-
| |
| | align="right" | 1 000 000 000 000 000 || 1000<sup>5</sup> || P || [[Peta-|Peta]] || Pi || 1024<sup>5</sup> || align="right" | 1 125 899 906 842 624
| |
| |-
| |
| | align="right" | 1 000 000 000 000 000 000 || 1000<sup>6</sup> || E || [[Exa]] || Ei || 1024<sup>6</sup> || align="right" | 1 152 921 504 606 846 976
| |
| |-
| |
| | align="right" | 1 000 000 000 000 000 000 000 || 1000<sup>7</sup> || Z || [[Zetta]] || Zi || 1024<sup>7</sup> || align="right" | 1 180 591 620 717 411 303 424
| |
| |-
| |
| | align="right" | 1 000 000 000 000 000 000 000 000 || 1000<sup>8</sup> || Y || [[Yotta]] || Yi || 1024<sup>8</sup> || align="right" | 1 208 925 819 614 629 174 706 176
| |
| |-
| |
| |}
| |
| | |
| === {{anchor|Fractional numbers}} Fractional numbers ===
| |
| <!-- This Anchor tag serves to provide a permanent target for incoming section links. Please do not modify it, even if you modify the section title. -->
| |
| {{main|Fraction (mathematics)}}
| |
| This is a table of English names for positive [[rational number]]s less than or equal to 1. It also lists alternative names, but there is no widespread convention for the names of extremely small positive numbers.
| |
| | |
| Keep in mind that rational numbers like 0.12 can be represented in [[Infinity|infinitely]] many ways, e.g. ''zero-point-one-two'' (0.12), ''twelve [[percent]]'' (12%), ''three twenty-fifths'' <math>\left({3 \over 25}\right)</math>, ''nine seventy-fifths'' <math>\left({9 \over 75} \right)</math>, ''six fiftieths'' <math>\left({6 \over 50}\right)</math>, ''twelve hundredths'' <math>\left({12 \over 100}\right)</math>, ''twenty-four two-hundredths'' <math>\left({24 \over 200}\right)</math>, etc.
| |
| {| class="wikitable"
| |
| |-
| |
| ! Value !! Fraction !! Common names !! Alternative names
| |
| |-
| |
| | 1
| |
| | align="center" | <math>1 \over 1</math>
| |
| | One
| |
| | [[0.999...]], Unity
| |
| |-
| |
| | 0.9
| |
| | align="center" | <math>9 \over 10</math>
| |
| | Nine tenths, [zero] point nine
| |
| |-
| |
| | 0.8
| |
| | align="center" | <math>4 \over 5</math>
| |
| | Four fifths, eight tenths, [zero] point eight
| |
| |-
| |
| | 0.7
| |
| | align="center" | <math>7 \over 10</math>
| |
| | Seven tenths, [zero] point seven
| |
| |-
| |
| | 0.6
| |
| | align="center" | <math>3 \over 5</math>
| |
| | Three fifths, six tenths, [zero] point six
| |
| |-
| |
| | 0.5
| |
| | align="center" | <math>1 \over 2</math>
| |
| | [[One half]], five tenths, [zero] point five
| |
| |-
| |
| | 0.4
| |
| | align="center" | <math>2 \over 5</math>
| |
| | Two fifths, four tenths, [zero] point four
| |
| |-
| |
| | 0.3 (333 333)...
| |
| | align="center" | <math>1 \over 3</math>
| |
| | One third
| |
| |-
| |
| | 0.3
| |
| | align="center" | <math>3 \over 10</math>
| |
| | Three tenths, [zero] point three
| |
| |-
| |
| | 0.25
| |
| | align="center" | <math>1 \over 4</math>
| |
| | One quarter, one fourth, twenty-five hundredths, [zero] point two five
| |
| |-
| |
| | 0.2
| |
| | align="center" | <math>1 \over 5</math>
| |
| | One fifth, two tenths, [zero] point two
| |
| |-
| |
| | 0.16 (666 666)...
| |
| | align="center" | <math>1 \over 6</math>
| |
| | One sixth
| |
| |-
| |
| | 0.142 857 (142 857)...
| |
| | align="center" | <math>1 \over 7</math>
| |
| | One seventh
| |
| |-
| |
| | 0.125
| |
| | align="center" | <math>1 \over 8</math>
| |
| | One eighth, one-hundred-[and-]twenty-five thousandths, [zero] point one two five
| |
| |-
| |
| | 0.1 (111 111)...
| |
| | align="center" | <math>1 \over 9</math>
| |
| | One ninth
| |
| |-
| |
| | 0.1
| |
| | align="center" | <math>1 \over 10</math>
| |
| | One tenth, [zero] point one
| |
| | One perdecime, one perdime
| |
| |-
| |
| | 0.090 (909 090)...
| |
| | align="center" | <math>1 \over 11</math>
| |
| | One eleventh
| |
| |-
| |
| | 0.09
| |
| | align="center" | <math>9 \over 100</math>
| |
| | Nine hundredths, [zero] point zero nine
| |
| |-
| |
| | 0.083 (333 333)...
| |
| | align="center" | <math>1 \over 12</math>
| |
| | One twelfth
| |
| |-
| |
| | 0.08
| |
| | align="center" | <math>2 \over 25</math>
| |
| | Two twenty-fifths, eight hundredths, [zero] point zero eight
| |
| |-
| |
| | 0.0625
| |
| | align="center" | <math>1 \over 16</math>
| |
| | One sixteenth, six-hundred-[and-]twenty-five ten-thousandths, [zero] point zero six two five
| |
| |-
| |
| | 0.05
| |
| | align="center" | <math>1 \over 20</math>
| |
| | One twentieth, [zero] point zero five
| |
| |-
| |
| | 0.047 619 (047 619)...
| |
| | align="center" | <math>1 \over 21</math>
| |
| | One twenty-first
| |
| |-
| |
| | 0.045 (454 545)...
| |
| | align="center" | <math>1 \over 22</math>
| |
| | One twenty-second
| |
| |-
| |
| | 0.043 478 260 869 565 217 3913 (043 478)...
| |
| | align="center" | <math>1 \over 23</math>
| |
| | One twenty-third
| |
| |-
| |
| | 0.03 (333 333)...
| |
| | align="center" | <math>1 \over 30</math>
| |
| | One thirtieth
| |
| |-
| |
| | 0.016 (666 666)...
| |
| | align="center" | <math>1 \over 60</math>
| |
| | One sixtieth
| |
| | One [[minute]]
| |
| |-
| |
| | 0.012345679 (012345679)...
| |
| | align="center" | <math>1 \over 81</math>
| |
| | One eighty-first
| |
| |-
| |
| | 0.01
| |
| | align="center" | <math>1 \over 100</math>
| |
| | One hundredth, [zero] point zero one
| |
| | One [[percent]]
| |
| |-
| |
| | 0.001
| |
| | align="center" | <math>1 \over 1000</math>
| |
| | One thousandth, [zero] point zero zero one
| |
| | One [[permille]]
| |
| |-
| |
| | 0.000 27 (777 777)...
| |
| | align="center" | <math>1 \over 3600</math>
| |
| | One thirty-six hundredth
| |
| | One [[arcsecond|second]]
| |
| |-
| |
| | 0.000 1
| |
| | align="center" | <math>1 \over 10000</math>
| |
| | One ten-thousandth, [zero] point zero zero zero one
| |
| | One myriadth, one permyria, one permyriad, one [[basis point]]
| |
| |-
| |
| | 0.000 01
| |
| | align="center" | <math>1 \over 10^5</math>
| |
| | One hundred-thousandth
| |
| | One lakhth, one perlakh
| |
| |-
| |
| | 0.000 001
| |
| | align="center" | <math>1 \over 10^6</math>
| |
| | One millionth
| |
| | One perion, one [[Parts per million|ppm]]
| |
| |-
| |
| | 0.000 000 1
| |
| | align="center" | <math>1 \over 10^7</math>
| |
| | One ten-millionth
| |
| | One crorth, one percrore
| |
| |-
| |
| | 0.000 000 01
| |
| | align="center" | <math>1 \over 10^8</math>
| |
| | One hundred-millionth
| |
| | One awkth, one perawk
| |
| |-
| |
| | 0.000 000 001
| |
| | align="center" | <math>1 \over 10^9</math>
| |
| | One billionth (in some dialects)
| |
| | One [[Parts per billion|ppb]]
| |
| |-
| |
| | 0
| |
| | align="center" | <math>0 \over 1</math>
| |
| | [[Names for the number 0 in English|Zero]]
| |
| | Nil
| |
| |-
| |
| |}
| |
| | |
| == Irrational and suspected irrational numbers ==
| |
| {{main|irrational number}}
| |
| | |
| === Algebraic numbers ===
| |
| {{main|Algebraic number}}
| |
| {| class="wikitable"
| |
| |-
| |
| ! Expression !! Approximate value !! Notes
| |
| |-
| |
| | align="center" | <math>\frac{\sqrt{3}}{4}</math>
| |
| | 0.433 012 701 892 219 323 381 861 585 376
| |
| | Area of a triangle with sides of length one and half its height.
| |
| |-
| |
| | align="center" | <math>{\sqrt{5} - 1} \over 2</math>
| |
| | 0.618 033 988 749 894 848 204 586 834 366
| |
| | [[Golden ratio#Golden ratio conjugate|Golden ratio conjugate]] <math>\Phi\,</math>, [[Multiplicative inverse|reciprocal]] of and one less than the [[golden ratio]].
| |
| |-
| |
| | align="center" | <math>\sqrt[12]{2}</math>
| |
| | 1.059 463 094 359 295 264 561 825 294 946
| |
| | [[Twelfth root of two]]. <br> Proportion between the frequencies of adjacent [[semitone]]s in the [[equal temperament]] scale.
| |
| |-
| |
| | align="center" | <math>\frac{3 \sqrt{2}}{4}</math>
| |
| | 1.060 660 171 779 821 286 601 266 543 157
| |
| | The size of the cube that satisfies [[Prince Rupert's cube]].
| |
| |-
| |
| | align="center" | <math>\sqrt[3]{2}</math>
| |
| | 1.259 921 049 894 873 164 767 210 607 278
| |
| | [[Cube root]] of two. <br> Length of the edge of a [[cube]] with volume two. See [[doubling the cube]] for the significance of this number.
| |
| |-
| |
| | align="center" | n/a
| |
| | 1.303 577 269 034 296 391 257 099 112 153
| |
| | [[Conway constant#Basic properties|Conway's constant]], defined as the unique positive real root of a certain polynomial of degree 71.
| |
| |-
| |
| | align="center" | <math>\sqrt[3]{\frac{1}{2}+\frac{1}{6}\sqrt{\frac{23}{3}}}+</math><br><math>\sqrt[3]{\frac{1}{2}-\frac{1}{6}\sqrt{\frac{23}{3}}}</math>
| |
| | 1.324 717 957 244 746 025 960 908 854 478
| |
| | [[Plastic number]], the unique real root of the cubic equation <math>x^3=x+1\, .</math>
| |
| |-
| |
| | align="center" | <math>\sqrt{2}</math>
| |
| | 1.414 213 562 373 095 048 801 688 724 210
| |
| | <math>\sqrt{2} = 2 \sin 45^\circ = 2 \cos 45^\circ</math> <br> [[Square root of two]] a.k.a. [[Pythagoras' constant]]. <br> Ratio of [[diagonal]] to side length in a [[Square (geometry)|square]]. <br> Proportion between the sides of [[paper size]]s in the [[ISO 216]] series (originally [[DIN]] 476 series).
| |
| |-
| |
| | align="center" | <math>\frac{\sqrt{17}-1}{2}</math>
| |
| | 1.561 552 812 808 830 274 910 704 927 987
| |
| | The [[Triangular number#Triangular roots and tests for triangular numbers|Triangular root]] of 2.
| |
| |-
| |
| | align="center" | <math>{\sqrt{5} + 1} \over 2</math>
| |
| | 1.618 033 988 749 894 848 204 586 834 366
| |
| | [[Golden ratio]] <math>\left(\phi\right)</math>, the larger of the two real roots of <math>x^2=x+1\, .</math>
| |
| |-
| |
| | align="center" | <math>\sqrt{3}</math>
| |
| | 1.732 050 807 568 877 293 527 446 341 506
| |
| | <math>\sqrt{3} = 2 \sin 60^\circ = 2 \cos 30^\circ</math> <br> [[Square root of three]] a.k.a. ''[[vesica piscis|the measure of the fish]]''. <br> Length of the [[space diagonal]] of a [[cube]] with edge length 1. <br> Length of the diagonal of a <math>1 \times \sqrt{2}</math> [[rectangle]]. <br> [[Altitude (triangle)|Altitude]] of an [[equilateral triangle]] with side length 2. <br> Twice the altitude of an equilateral triangle with side length 1. <br> Altitude of a [[hexagon|regular hexagon]] with side length 1 and diagonal length 2.
| |
| |-
| |
| | align="center" | <math>\frac{1+\sqrt[3]{19+3\sqrt{33}}+\sqrt[3]{19-3\sqrt{33}}}{3}</math>
| |
| | 1.839 286 755 214 161 132 551 852 564 653
| |
| | The [[Generalizations of Fibonacci numbers#Tribonacci numbers|Tribonacci constant]]. <br> Used in the formula for the volume of the [[snub cube]] and properties of some of its [[dual polyhedron]]s. <br> It satisfies the equation x + x<sup>−3</sup> = 2.
| |
| |-
| |
| | align="center" | <math>\sqrt{5}</math>
| |
| | 2.236 067 977 499 789 696 409 173 668 731
| |
| | [[Square root of five]]. <br> Length of the [[diagonal]] of a <math>1 \times 2</math> [[rectangle]]. <br> Length of the diagonal of a <math>\sqrt{2} \times \sqrt{3}</math> rectangle. <br> Length of the space diagonal of a <math>1 \times \sqrt{2} \times \sqrt{2}</math> [[cuboid|rectangular box]].
| |
| |-
| |
| | align="center" | <math>\sqrt{2} + 1</math>
| |
| | 2.414 213 562 373 095 048 801 688 724 210
| |
| | [[Silver ratio]] <math>\left(\delta_S\right)</math>, the larger of the two real roots of <math>x^2=2x+1\, .</math>
| |
| |-
| |
| | align="center" | <math>\sqrt{6}</math>
| |
| | 2.449 489 742 783 178 098 197 284 074 706
| |
| | <math>\sqrt{2} \cdot \sqrt{3}</math> = [[area]] of a <math>\sqrt{2} \times \sqrt{3}</math> rectangle. <br> Length of the [[space diagonal]] of a <math>1 \times 1 \times 2</math> [[cuboid|rectangular box]]. <br> Length of the diagonal of a <math>1 \times \sqrt{5}</math> [[rectangle]]. <br> Length of the diagonal of a <math>2 \times \sqrt{2}</math> rectangle. <br> Length of the [[diagonal]] of a [[Square (geometry)|square]] with side length <math>\sqrt{3}</math>.
| |
| |-
| |
| | align="center" | <math>\sqrt{7}</math>
| |
| | 2.645 751 311 064 590 590 501 615 753 639
| |
| | Length of the [[space diagonal]] of a <math>1 \times 2 \times \sqrt{2}</math> [[cuboid|rectangular box]]. <br> Length of the diagonal of a <math>1 \times \sqrt{6}</math> [[rectangle]]. <br> Length of the diagonal of a <math>2 \times \sqrt{3}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{2} \times \sqrt{5}</math> rectangle.
| |
| |-
| |
| | align="center" | <math>\sqrt{8}</math>
| |
| | 2.828 427 124 746 190 097 603 377 448 419
| |
| | <math>2 \sqrt{2}</math> <br> [[Volume]] of a [[cube]] with edge length <math>\sqrt{2}</math>. <br> Length of the [[diagonal]] of a [[Square (geometry)|square]] with side length 2. <br> Length of the diagonal of a <math>1 \times \sqrt{7}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{2} \times \sqrt{6}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{3} \times \sqrt{5}</math> rectangle.
| |
| |-
| |
| | align="center" | <math>\sqrt{10}</math>
| |
| | 3.162 277 660 168 379 331 998 893 544 433
| |
| | <math>\sqrt{2} \cdot \sqrt{5}</math> = [[area]] of a <math>\sqrt{2} \times \sqrt{5}</math> rectangle. <br> Length of the [[diagonal]] of a <math>1 \times 3</math> [[rectangle]]. <br> Length of the diagonal of a <math>2 \times \sqrt{6}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{3} \times \sqrt{7}</math> rectangle. <br> Length of the [[diagonal]] of a [[Square (geometry)|square]] with side length <math>\sqrt{5}</math>.
| |
| |-
| |
| | align="center" | <math>\sqrt{11}</math>
| |
| | 3.316 624 790 355 399 849 114 932 736 671
| |
| | Length of the [[space diagonal]] of a <math>1 \times 1 \times 3</math> [[cuboid|rectangular box]]. <br> Length of the diagonal of a <math>1 \times \sqrt{10}</math> [[rectangle]]. <br> Length of the diagonal of a <math>2 \times \sqrt{7}</math> rectangle. <br> Length of the diagonal of a <math>3 \times \sqrt{2}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{3} \times \sqrt{8}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{5} \times \sqrt{6}</math> rectangle.
| |
| |-
| |
| | align="center" | <math>\sqrt{12}</math>
| |
| | 3.464 101 615 137 754 587 054 892 683 012
| |
| | <math>2 \sqrt{3}</math> <br> Length of the [[space diagonal]] of a [[cube]] with edge length 2. <br> Length of the diagonal of a <math>1 \times \sqrt{11}</math> [[rectangle]]. <br> Length of the diagonal of a <math>2 \times \sqrt{8}</math> rectangle. <br> Length of the diagonal of a <math>3 \times \sqrt{3}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{2} \times \sqrt{10}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{5} \times \sqrt{7}</math> rectangle. <br> Length of the [[diagonal]] of a [[Square (geometry)|square]] with side length <math>\sqrt{6}</math>.
| |
| |}
| |
| | |
| === Transcendental numbers ===
| |
| {{main|Transcendental number}}
| |
| * (−1)<sup>[[Imaginary unit|i]]</sup> = e<sup>−π</sup> = 0.0432139183...
| |
| * [[Liouville number#Liouville constant|Liouville constant]]: c = 0.110001000000000000000001000...
| |
| * [[Champernowne constant]]: C<sub>10</sub> = 0.12345678910111213141516...
| |
| * [[Imaginary unit#i raised to the i power|i<sup>i</sup>]] = √(e<sup>−π</sup>) = 0.207879576...
| |
| * [[Copeland–Erdős constant]]: 0.235711131719232931374143...
| |
| * The inverse of [[π]]: 0.318309886183790671537767526745028724068919291480...<ref name="David Wells page 27">"The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 27.</ref>
| |
| * The inverse of [[e (number)|e]]: 0.367879441171442321595523770161460867445811131031...<ref name="David Wells page 27"/>
| |
| * [[Prouhet–Thue–Morse constant]]: τ = 0.412454033640...
| |
| * The [[Logarithm]] of [[e (number)|e]] to [[base 10]]: 0.434294481903251827651128918916605082294397005803...<ref name="David Wells page 27"/>
| |
| * [[Omega constant]]: Ω = 0.5671432904097838729999686622...
| |
| * [[Cahen's constant]]: c = 0.64341054629...
| |
| * [[Natural logarithm of 2|ln 2]]: 0.693147180559945309417232121458...
| |
| * [[π]]/√18 = 0.7404... the maximum density of sphere packing in three dimensional Euclidean space according to the [[Kepler conjecture]]<ref name="David Wells page 29">"The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 29.</ref>
| |
| * [[Gauss's constant]]: G = 0.8346268...
| |
| * [[π]]/√12 = 0.9086..., the fraction of the plane covered by the densest possible [[circle packing#Packings in the plane|circle packing]]<ref>"The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 30.</ref>
| |
| * [[Euler number|e<sup>i</sup>+e<sup>-i</sup>]] = [[Cosine similarity|2cos(1)]] = 1.08060461...
| |
| * π<sup>4</sup>/90 = [[Riemann zeta function|ζ]](4) = 1.082323...<ref>"The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 33.</ref>
| |
| * [[Khinchin–Lévy constant]]: 1.1865691104...[http://mathworld.wolfram.com/Khinchin-LevyConstant.html]
| |
| * [[Super-root#Square root|√2<sub>s</sub>]]: 1.559610469...<ref>http://www.qbyte.org/puzzles/p029s.html</ref>
| |
| * [[Favard constant]]: K<sub>1</sub> = 1.57079633...
| |
| * [[Irrational number#Logarithms|log<sub>2</sub> 3]]: 1.584962501..., in fact, the logarithm of any positive integer to any integer base greater than one is either rational or transcendental.
| |
| * [[Gelfond–Schneider constant|√2<sup>√2</sup>]]: 1.6325269...
| |
| * [[Komornik–Loreti constant]]: q = 1.787231650...
| |
| * [[Universal parabolic constant]]: P<sub>2</sub> = 2.29558714939...
| |
| * [[Gelfond–Schneider constant]]: 2.665144143...
| |
| * [[Euler's number]]: e = 2.718281828459045235360287471353...
| |
| * [[Pi]]: π = 3.141592653589793238462643383279...
| |
| * [[Van der Pauw's constant]]: pi/ln(2) = 4.53236014182719380962...<ref>{{OEIS2C|A163973}}</ref>
| |
| * [[Imaginary unit|<sup>i</sup>√i]] : 4.81047738..., √[[Gelfond's constant|e<sup>π</sup>]]
| |
| * [[Tau]], or 2π: τ = 6.283185307179586..., The ratio of the [[circumference]] to a [[radius]], and the number of [[radian]]s in a complete circle<ref>"The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 69</ref><ref>Sequence {{OEIS2C|A019692}}.</ref>
| |
| * [[Gelfond's constant]]: 23.14069263277925...
| |
| * [[Heegner number#Almost integers and Ramanujan's constant|Ramanujan's constant]]: e<sup>(π√163)</sup> = 262537412640768743.99999999999925...
| |
| | |
| ==== Suspected transcendentals ====
| |
| | |
| * [[Lambert W function|-2W (½)]] = -0.703467422498391652049818601859902130..., the real solution to exp(x) = x<sup>2</sup>.
| |
| * [[Riemann–Siegel formula|Z(1)]]: -0.736305462867317734677899828925614672...
| |
| * [[Heath-Brown–Moroz constant]]: C = 0.001317641...
| |
| * [[Kepler–Bouwkamp constant]]: 0.1149420448...
| |
| * [[MRB constant]]: 0.187859...
| |
| * [[Meissel–Mertens constant]]: M = 0.2614972128476427837554268386086958590516...
| |
| * [[Bernstein's constant]]: β = 0.2801694990...
| |
| * [[Strongly carefree constant]]: 0.286747... <ref>{{OEIS2C|A065473}}</ref>
| |
| * [[Gauss–Kuzmin–Wirsing constant]]: λ<sub>1</sub> = 0.3036630029... <ref>{{mathworld|urlname=Gauss-Kuzmin-WirsingConstant|title=Gauss-Kuzmin-Wirsing Constant}}</ref>
| |
| * [[Hafner–Sarnak–McCurley constant]]: 0.3532363719...
| |
| * [[Artin's conjecture on primitive roots|Artin's constant]]: 0.3739558136...
| |
| * [[Prime constant]]: ρ = 0.414682509851111660248109622...
| |
| * [[Carefree constant]]: 0.428249... <ref>{{OEIS2C|A065464}}</ref>
| |
| * [[Fresnel integral|S(1)]]: 0.438259147390354766076756696625152...
| |
| * [[Dawson integral|F(1)]]: 0.538079506912768419136387420407556...
| |
| * [[Stephens' constant]]: 0.575959... <ref>{{OEIS2C|A065478}}</ref>
| |
| * [[Euler–Mascheroni constant]]: γ = 0.577215664901532860606512090082...
| |
| * [[Golomb–Dickman constant]]: λ = 0.62432998854355087099293638310083724...
| |
| * [[Twin prime conjecture#First Hardy.E2.80.93Littlewood conjecture|Twin prime constant]]: C<sub>2</sub> = 0.660161815846869573927812110014...
| |
| * [[Feller-Tornier constant]]: 0.661317... <ref>{{OEIS2C|A065493}}</ref>
| |
| * [[Laplace limit]]: ε = 0.6627434193...[http://mathworld.wolfram.com/LaplaceLimit.html]
| |
| * [[Taniguchi's constant]]: 0.678234... <ref>{{OEIS2C|A175639}}</ref>
| |
| * [[Continued Fraction Constant]]: C = 0.697774657964007982006790592551...<ref>http://mathworld.wolfram.com/ContinuedFractionConstant.html</ref>
| |
| * [[Embree–Trefethen constant]]: β* = 0.70258...
| |
| * [[Sarnak's constant]]: 0.723648... <ref>{{OEIS2C|A065476}}</ref>
| |
| * [[Landau–Ramanujan constant]]: 0.76422365358922066299069873125...
| |
| * [[Fresnel integral|C(1)]]: 0.77989340037682282947420641365...
| |
| * [[Riemann zeta function|ζ]](3)<sup>−1</sup> = 0.831907..., the probability that three random numbers have no [[common factor]].<ref name="David Wells page 29"/>
| |
| * [[Brun's constant|Brun's constant for prime quadruplets]]: B<sub>2</sub> = 0.8705883800...
| |
| * [[Quadratic class number constant]]: 0.881513... <ref>{{OEIS2C|A065465}}</ref>
| |
| * [[Catalan's constant]]: G = 0.915965594177219015054603514932384110774...
| |
| * [[Random Fibonacci sequence|Viswanath's constant]]: σ(1) = 1.13198824...
| |
| * [[Riemann zeta function|ζ]](3) = 1.202056903159594285399738161511449990764986292..., also known as [[Apéry's constant]], known to be irrational, but not known whether or not it is [[Transcendental function|transcendental]].<ref>"The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 33</ref>
| |
| * [[Double exponential function#Doubly exponential sequences|Vardi's constant]]: E = 1.264084735305...
| |
| * [[Glaisher–Kinkelin constant]]: A = 1.28242712...
| |
| * [[Mills' constant]]: A = 1.30637788386308069046...
| |
| * [[Totient summatory constant]]: 1.339784... <ref>{{OEIS2C|A065483}}</ref>
| |
| * [[Ramanujan–Soldner constant]]: μ = 1.451369234883381050283968485892027449493…
| |
| * [[Backhouse's constant]]: 1.456074948...
| |
| * [[Lieb's square ice constant]]: 1.5396007...
| |
| * [[Erdős–Borwein constant]]: E = 1.606695152415291763...
| |
| * [[Somos' quadratic recurrence constant]]: σ = 1.661687949633594121296...
| |
| * [[Niven's constant]]: c = 1.705211...
| |
| * [[Brun's constant]]: B<sub>2</sub> = 1.902160583104...
| |
| * [[Landau's totient constant]]: 1.943596... <ref>{{OEIS2C|A082695}}</ref>
| |
| * [[Lambert W function|exp(-W <sub>0</sub>(-ln(3<sup>⅓</sup>)))]] = 2.47805268028830..., the smaller solution to 3<sup>x</sup> = x<sup>3</sup> and what, when put to the root of itself, is equal to 3 put to the root of itself.<ref>{{OEIS2C|A166928}}</ref>
| |
| * Second [[Feigenbaum constant]]: α = 2.5029...
| |
| * [[Sierpiński's constant]]: K = 2.5849817595792532170658936...
| |
| * [[Barban's constant]]: 2.596536... <ref>{{OEIS2C|A175640}}</ref>
| |
| * [[Khinchin's constant]]: K<sub>0</sub> = 2.685452001...[http://mathworld.wolfram.com/KhinchinsConstant.html]
| |
| * [[Fransén–Robinson constant]]: F = 2.8077702420...
| |
| * [[Murata's constant]]: 2.826419... <ref>{{OEIS2C|A065485}}</ref>
| |
| * [[Lévy's constant]]: γ = 3.275822918721811159787681882...
| |
| * [[Reciprocal Fibonacci constant]]: ψ = 3.359885666243177553172011302918927179688905133731...
| |
| * First [[Feigenbaum constant]]: δ = 4.6692...
| |
| | |
| === Numbers not known with high precision ===
| |
| | |
| * [[Landau's constants|Landau's constant]]: 0.4330 < B < 0.472
| |
| * [[Bloch's theorem (complex variables)#Bloch's constant|Bloch's constant]]: 0.4332 < B < 0.4719
| |
| * [[Landau's constants|Landau's constant]]: 0.5 < L < 0.544
| |
| * [[Landau's constants|Landau's constant]]: 0.5 < A < 0.7853
| |
| * [[Grothendieck constant]]: 1.67 < k < 1.79
| |
| | |
| == Hypercomplex numbers ==
| |
| {{main|Hypercomplex number}}
| |
| | |
| === Algebraic complex numbers ===
| |
| | |
| * [[Imaginary unit]]: <math>i = \sqrt{-1}</math>
| |
| * ''n''th [[roots of unity]]: <math>\xi^k_n = \cos\left(2\pi \tfrac{k}{n}\right)+i\sin\left(2\pi \tfrac{k}{n}\right)</math>
| |
| | |
| ===Other hypercomplex numbers===
| |
| | |
| * The [[quaternion]]s
| |
| * The [[octonion]]s
| |
| * The [[sedenion]]s
| |
| * The [[dual number]]s (with an [[infinitesimal]])
| |
| | |
| == Transfinite numbers ==
| |
| {{main|Transfinite number}}
| |
| * [[Infinity]] in general: <math>\infty</math>
| |
| * [[Aleph-null]]: <math>\aleph_0</math>
| |
| * [[Aleph-one]]: <math>\aleph_1</math>
| |
| * [[Beth-one]]: (<math>\beth_1</math>) is the [[cardinality of the continuum]] <math>(2^{\aleph_0})</math>
| |
| * ℭ or <math>\mathfrak c</math>: the [[cardinality of the continuum]] <math>(2^{\aleph_0})</math>
| |
| * [[First infinite ordinal|omega]]: ω, the smallest infinite ordinal
| |
| | |
| == Numbers representing measured quantities ==
| |
| | |
| * [[2 (number)|Pair]]: 2 (the base of the [[binary numeral system]])
| |
| * [[Dozen]]: 12 (the base of the [[duodecimal]] numeral system)
| |
| * [[Baker's dozen]]: 13
| |
| * [[20 (number)|Score]]: 20 (the base of the [[vigesimal]] numeral system)
| |
| * [[Gross (unit)|Gross]]: 144 (= 12<sup>2</sup>)
| |
| * [[Great gross]]: 1728 (= 12<sup>3</sup>)
| |
| | |
| == Numbers representing scientific quantities ==
| |
| | |
| * [[Avogadro constant]]: N{{sub|A}} = 6.0221417930... {{e|23}} mol<sup>−1</sup>
| |
| * [[Coulomb's constant]]: {{math|{{SubSup|k|e}}}} = 8.987551787368...
| |
| * [[Electronvolt]]: eV = 1.60217648740... {{e|–19}} J
| |
| * [[Electron#Fundamental properties|Electron relative atomic mass]]: A{{sub|r}}(e) = 0.0005485799094323...
| |
| * [[Fine structure constant]]: α = 0.007297352537650...
| |
| * [[Gravitational constant]]: G = 6.67384...
| |
| * [[Molar mass constant]]: M{{sub|u}} = 0.001 kg/mol
| |
| * [[Planck constant]]: h = 6.6260689633... {{e|–34}} Js
| |
| * [[Rydberg constant]]: R{{sub|∞}} = 10973731.56852773... m<sup>−1</sup>
| |
| * [[Speed of light|Speed of light in vacuum]]: c = 299792458 m/s
| |
| * [[Stefan-Boltzmann constant]]: σ = 5.670400{{e|-8}} W • m<sup>−2</sup> • K<sup>−4</sup>
| |
| | |
| == Numbers without specific values ==
| |
| | |
| {{Main|Indefinite and fictitious numbers}}
| |
| | |
| ==See also==
| |
| {{col-begin}}
| |
| {{col-break|width=33%}}
| |
| *[[English-language numerals]]
| |
| *[[Floating point]]
| |
| *[[Fraction (mathematics)]]
| |
| *[[Integer sequence]]
| |
| *[[Interesting number paradox]]
| |
| *[[Large numbers]]
| |
| *[[List of numbers in various languages]]
| |
| *[[List of prime numbers]]
| |
| *[[List of types of numbers]]
| |
| *[[Mathematical constant]]
| |
| *[[Names of large numbers]]
| |
| *[[Names of small numbers]]
| |
| {{col-break}}
| |
| *[[Negative number]]
| |
| *[[Number prefix]]
| |
| *[[Numeral (linguistics)]]
| |
| *[[Orders of magnitude (numbers)]]
| |
| *[[Ordinal number]]
| |
| *''[[The Penguin Dictionary of Curious and Interesting Numbers]]''
| |
| *[[Power of two]]
| |
| *[[Powers of 10]]
| |
| *[[SI prefix]]
| |
| *[[Small number]]
| |
| *[[Surreal number]]
| |
| *[[Table of prime factors]]
| |
| {{col-end}}
| |
| | |
| ==Notes==
| |
| {{Reflist}}
| |
| | |
| == Further reading ==
| |
| * ''Kingdom of Infinite Number: A Field Guide'' by Bryan Bunch, W.H. Freeman & Company, 2001. ISBN 0-7167-4447-3
| |
| | |
| == External links ==
| |
| * [http://www.virtuescience.com/number.html The Database of Number Correlations: 1 to 2000+]
| |
| * [http://www.archimedes-lab.org/numbers/Num1_69.html What's Special About This Number? A Zoology of Numbers: from 0 to 500]
| |
| * [http://www.mathcats.com/explore/reallybignumbers.html See how to write big numbers]
| |
| * [http://www.kokogiak.com/megapenny/ The MegaPenny Project – Visualizing big numbers]
| |
| * [http://pages.prodigy.net/jhonig/bignum/indx.html About big numbers]
| |
| * [http://www.mrob.com/pub/math/largenum.html Robert P. Munafo's Large Numbers page]
| |
| * [http://www-users.cs.york.ac.uk/~susan/cyc/b/big.htm Different notations for big numbers – by Susan Stepney]
| |
| * [http://www.unc.edu/~rowlett/units/large.html Names for Large Numbers], in ''How Many? A Dictionary of Units of Measurement'' by Russ Rowlett
| |
| * [http://www.stetson.edu/~efriedma/numbers.html What's Special About This Number?] (from 0 to 9999)
| |
| | |
| {{DEFAULTSORT:List Of Numbers}}
| |
| [[Category:Number-related lists]]
| |
| [[Category:Mathematical tables|Numbers]]
| |
| [[Category:Numeral systems]]
| |