Thermal radiation: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>ClueBot NG
m Reverting possible vandalism by 96.4.165.117 to version by Iae. False positive? Report it. Thanks, ClueBot NG. (1666185) (Bot)
Undid revision 639713878 by 117.244.109.242 (talk) vandal
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{about|the concept in mathematics and exception in computing}}
Nothing to say about myself I think.<br>Enjoying to be a member of wmflabs.org.<br>I just wish I am useful at all<br><br>My web-site - [http://hemorrhoidtreatmentfix.com/hemorrhoid-surgery hemorrhoids surgery]
{{More footnotes|date=September 2011}}
 
<!-- Markup note:  See the discussion about how to properly format fractions -->
[[File:Hyperbola one over x.svg|thumb|Diagrammatic representation of limits approaching infinity|The function ''y''&nbsp;=&nbsp;1/''x''. As ''x'' approaches 0 from the right, ''y'' approaches infinity. As ''x'' approaches 0 from the left, ''y'' approaches negative infinity (see [[asymptote]]).]]
 
In [[mathematics]], '''division by zero''' is [[division (mathematics)|division]] where the divisor (denominator) is [[0 (number)|zero]]. Such a division can be formally [[expression (mathematics)|expressed]] as ''a''/0 where ''a'' is the dividend (numerator). Whether this [[expression (mathematics)|expression]] can be assigned a [[well-defined]] value depends upon the mathematical setting.  In ordinary ([[real number]]) arithmetic, the expression has no meaning, as there is no number which, multiplied by 0, gives ''a'' (''a''≠0), and so division by zero is [[undefined (mathematics)|undefined]]. Since any number multiplied by zero is zero, the expression 0/0 has no defined value and is called an [[indeterminate form]]. Historically, one of the earliest recorded references to the mathematical impossibility of assigning a value to ''a''&nbsp;/0 is contained in [[George Berkeley]]'s criticism of [[infinitesimal calculus]] in ''[[The Analyst]]'' ("ghosts of departed quantities"). {{Citation needed|date=May 2011}}
 
In [[Computer|computing]], a [[computer programming|program error]] may lead to an attempt to divide a number by zero. Depending on the programming environment and the type of number (e.g. floating point, integer) being divided by zero, it may  generate positive or negative infinity by the [[IEEE 754]] floating point standard, generate an [[exception handling|exception]], generate an error message, cause the program to terminate, or result in a special [[NaN|not-a-number]] value.
 
==In elementary arithmetic==
When division is explained at the [[elementary arithmetic]] level, it is often considered as splitting a [[Set (mathematics)|set]] of objects into equal parts. As an example, consider having ten cookies, and these cookies are to be distributed equally to five people at a table. Each person would receive <math>\textstyle\frac{10}{5}</math> = 2 cookies. Similarly, if there are ten cookies, and only one person at the table, that person would receive <math>\textstyle\frac{10}{1}</math> = 10 cookies.
 
So for dividing by zero – what is the number of cookies that each person receives when 10 cookies are evenly distributed amongst 0 people at a table? Certain words can be pinpointed in the question to highlight the problem. The problem with this question is the "when". There is no way to evenly distribute 10 cookies to nobody. In [[mathematical jargon]], a set of 10 items cannot be [[Partition of a set|partitioned]] into 0 subsets. So <math>\textstyle\frac{10}{0}</math>, at least in elementary arithmetic, is said to be either meaningless, or undefined.
 
Similar problems occur if one has 0 cookies and 0 people, but this time the problem is in the phrase "'''the''' number". A partition is possible (of a set with 0 elements into 0 parts), but since the partition has 0 parts, [[Vacuous truth|vacuously]] every set in our partition has a given number of elements, be it 0, 2, 5, or 1000.
 
If there are, say, 5 cookies and 2 people, the problem is in "evenly distribute". In any integer partition of a 5-set into 2 parts, one of the parts of the partition will have more elements than the other.  But the problem with 5 cookies and 2 people can be solved by cutting one cookie in half.  The problem with 5 cookies and 0 people cannot be solved in any way that preserves the meaning of "divides".
 
Another way of looking at division by zero, is that division can always be checked using multiplication.  Considering the 10/0 example above, setting x = 10/0,  if ''x'' equals ten divided by zero, then ''x'' times zero equals ten, but there is no ''x'' that, multiplied by zero, gives ten (or any other number than zero).  If instead of x=10/0 we have x=0/0, then every ''x'' satisfies the question 'what number x, multiplied by zero, gives zero?'
 
===Early attempts===
The ''[[Brahmasphutasiddhanta]]'' of [[Brahmagupta]] (598–668) is the earliest known text to treat [[0 (number)|zero]] as a number in its own right and to define operations involving zero.<ref name="Kaplan">{{cite book
  | last = Kaplan | first = Robert | title = The nothing that is: A natural history of zero
  | publisher = Oxford University Press | year = 1999 | location = New York
  | pages = 68–75 | isbn = 0-19-514237-3}}
</ref> The author failed, however, in his attempt to explain division by zero: his definition can be easily proven to lead to algebraic absurdities. According to Brahmagupta,
 
<blockquote>A positive or negative number when divided by zero is a fraction with the zero as denominator. Zero divided by a negative or positive number is either zero or is expressed as a fraction with zero as numerator and the finite quantity as denominator. Zero divided by zero is zero.</blockquote>
 
In 830, [[Mahavira (mathematician)|Mahavira]] tried unsuccessfully to correct Brahmagupta's mistake in his book in ''Ganita Sara Samgraha'': "A number remains unchanged when divided by zero."<ref name="Kaplan"/>
 
==In algebra==
It is generally regarded among mathematicians that a natural way to interpret division by zero is to first define division in terms of other arithmetic operations. Under the standard rules for arithmetic on [[integers]], [[rational numbers]], [[real numbers]], and [[complex numbers]], division by zero is undefined. Division by zero must be left undefined in any mathematical system that obeys the axioms of a [[field (mathematics)|field]]. The reason is that [[division (mathematics)|division]] is defined to be the inverse operation of [[multiplication]]. This means that the value of ''a''/''b'' is the solution ''x'' of the equation ''bx''&nbsp;=&nbsp;''a'' whenever such a value exists and is unique. Otherwise the value is left undefined.
 
For ''b'' = 0, the equation ''bx'' = ''a'' can be rewritten as 0''x'' = ''a'' or simply 0 = ''a''. Thus, in this case, the equation ''bx'' = ''a'' has ''no solution'' if ''a'' is not equal to 0, and has ''any'' ''x'' as a solution if ''a'' equals 0. In either case, there is no unique value, so <math>\textstyle\frac{a}{b}</math> is undefined. Conversely, in a [[field (mathematics)|field]], the expression <math>\textstyle\frac{a}{b}</math> is ''always'' defined '''if''' ''b'' is not equal to zero.
 
===Division as the inverse of multiplication===
The concept that explains [[Division (mathematics)|division]] in algebra is that it is the inverse of multiplication. For example,
 
:<math>\frac{6}{3}=2</math>
 
since 2 is the value for which the unknown quantity in
 
:<math>?\times 3=6</math>
 
is true. But the expression
 
:<math>\frac{6}{0}=\,?</math>
 
requires a value to be found for the unknown quantity in
 
:<math>?\times 0=6.</math>
 
But any number multiplied by 0 is 0 and so there is no number that solves the equation.
 
The expression
 
:<math>\frac{0}{0}=\,?</math>
 
requires a value to be found for the unknown quantity in
 
:<math>?\times 0=0.</math>
 
Again, any number multiplied by 0 is 0 and so this time every number solves the equation instead of there being a single number that can be taken as the value of 0/0.
 
In general, a single value can't be assigned to a fraction where the denominator is 0 so the value remains undefined (see below for other applications). 0/0 is known as [[Indeterminate form|indeterminate]].
 
===Fallacies based on division by zero===
It is possible to disguise a special case of division by zero in an [[algebra]]ic argument,<ref name="Kaplan"/> leading to [[invalid proof|spurious proofs]] that 1&nbsp;=&nbsp;2 such as the following:
 
With the following assumptions:
 
:<math>\begin{align}
0\times 1 &= 0 \\
0\times 2 &= 0.
\end{align}</math>
 
The following must be true:
 
:<math>0\times 1 = 0\times 2.\,</math>
 
Dividing by zero gives:
 
:<math>\textstyle \frac{0}{0}\times 1 = \frac{0}{0}\times 2.</math>
 
Simplified, yields:
 
:<math>1 = 2.\,</math>
 
The [[fallacy]] is the implicit assumption that dividing by 0 is a legitimate operation with the same properties as dividing by any other number.
 
==In calculus==
===Extended real line===
At first glance it seems possible to define ''a''/0 by considering the [[limit of a function|limit]] of ''a''/''b'' as ''b'' approaches 0.
 
For any positive ''a'', the limit from the right is
 
:<math>\lim_{b \to 0^+} {a \over b} = +\infty</math>
 
however, the limit from the left is
 
:<math>\lim_{b \to 0^-} {a \over b} = -\infty</math>
 
and so the <math>\lim_{b \to 0} {a \over b}</math> is undefined (the limit is also undefined for negative ''a'').
 
Furthermore, there is no obvious definition of 0/0 that can be derived from considering the limit of a ratio. The limit
 
:<math> \lim_{(a,b) \to (0,0)} {a \over b} </math>
 
does not exist.  Limits of the form
 
:<math> \lim_{x \to 0} {f(x) \over g(x)} </math>
 
in which both ''ƒ''(''x'') and ''g''(''x'') approach 0 as ''x'' approaches 0, may equal any real or infinite value, or may not exist at all, depending on the particular functions ''ƒ'' and ''g'' (see [[l'Hôpital's rule]] for discussion and examples of limits of ratios). These and other similar facts show that the expression 0/0 cannot be [[well-defined]] as a limit.
 
====Formal operations====
A [[formal calculation]] is one carried out using rules of arithmetic, without consideration of whether the result of the calculation is well-defined.  Thus, it is sometimes useful to think of ''a''/0, where ''a''&nbsp;≠&nbsp;0, as being <math>\infty</math>.  This infinity can be either positive, negative, or unsigned, depending on context. For example, formally:
 
:<math>\lim\limits_{x \to 0} {\frac{1}{x} =\frac{\lim\limits_{x \to 0} {1}}{\lim\limits_{x \to 0} {x}}}  = \infty.</math>
 
As with any formal calculation, invalid results may be obtained.  A logically rigorous (as opposed to formal) computation would assert only that
 
:<math>\lim\limits_{x \to 0^+} \frac{1}{x} = +\infty\text{ and }\lim\limits_{x \to 0^-} \frac{1}{x} = -\infty.</math>
 
Since the [[one-sided limit]]s are different, the two-sided limit does not exist in the standard framework of the real numbers. Also, the fraction 1/0 is left [[Defined and undefined|undefined]] in the [[extended real line]], therefore it and
 
: <math> \frac{\lim\limits_{x \to 0} 1 }{\lim\limits_{x \to 0} x}</math>
 
are meaningless [[Expression (mathematics)|expressions]].
 
===Real projective line===
The set <math>\mathbb{R}\cup\{\infty\}</math> is the [[real projective line]], which is a [[one-point compactification]] of the real line. Here <math>\infty</math> means an [[point at infinity|unsigned infinity]], an infinite quantity that is neither positive nor negative. This quantity satisfies <math>-\infty = \infty</math>, which is necessary in this context. In this structure, <math>\scriptstyle a/0 = \infty</math> can be defined for nonzero ''a'', and <math>\scriptstyle a/\infty = 0</math>. It is the natural way to view the range of the tangent and cotangent functions of [[trigonometry]]: tan(''x'') approaches the single point at infinity as ''x'' approaches either <math>\scriptstyle+\pi/2</math> or <math>\scriptstyle-\pi/2 </math> from either direction.
 
This definition leads to many interesting results. However, the resulting algebraic structure is not a [[Field (mathematics)|field]], and should not be expected to behave like one. For example, <math>\infty + \infty</math> is undefined in the projective line.
 
===Riemann sphere===
The set <math>\mathbb{C}\cup\{\infty\}</math> is the [[Riemann sphere]], which is of major importance in [[complex analysis]]. Here too <math>\infty</math> is an unsigned infinity – or, as it is often called in this context, the [[point at infinity]]. This set is analogous to the real projective line, except that it is based on the [[field (mathematics)|field]] of [[complex number]]s. In the Riemann sphere, <math>1/0=\infty</math>, but <math>0/0</math> is undefined, as is <math>0\times\infty</math>.
 
===Extended non-negative real number line===
The negative real numbers can be discarded, and infinity introduced, leading to the set [0,&nbsp;∞], where division by zero can be naturally defined as ''a''/0&nbsp;=&nbsp;∞ for positive&nbsp;''a''. While this makes division defined in more cases than usual, subtraction is instead left undefined in many cases, because there are no negative numbers.
 
==In higher mathematics==
Although division by zero cannot be sensibly defined with real numbers and integers, it is possible to consistently define it, or similar operations, in other mathematical structures.
 
===Non-standard analysis===
In the [[hyperreal number]]s and the [[surreal number]]s, division by zero is still impossible, but division by non-zero [[infinitesimal]]s is possible.
 
===Distribution theory===
In [[Distribution (mathematics)|distribution theory]] one can extend the function <math>\textstyle\frac{1}{x}</math> to a distribution on the whole space of real numbers (in effect by using [[Cauchy principal value]]s). It does not, however, make sense to ask for a 'value' of this distribution at ''x''&nbsp;=&nbsp;0; a sophisticated answer refers to the [[singular support]] of the distribution.
 
===Linear algebra===
In [[matrix (mathematics)|matrix]] algebra (or [[linear algebra]] in general), one can define a pseudo-division, by setting ''a''/''b''&nbsp;=&nbsp;''ab''<sup>+</sup>, in which ''b''<sup>+</sup> represents the pseudoinverse of ''b''. It can be proven that if ''b''<sup>−1</sup> exists, then ''b''<sup>+</sup> = ''b''<sup>−1</sup>. If ''b'' equals 0, then b<sup>+</sup> = 0; see [[Generalized inverse]].
 
===Abstract algebra===
Any number system that forms a [[commutative ring]] — for instance, the integers, the real numbers, and the complex numbers  — can be extended to a [[wheel theory|wheel]] in which division by zero is always possible; however, in such a case, "division" has a slightly different meaning.
 
The concepts applied to standard arithmetic are similar to those in more general algebraic structures, such as [[ring (mathematics)|rings]] and [[field (mathematics)|fields]]. In a field, every nonzero element is invertible under multiplication; as above, division poses problems only when attempting to divide by zero. This is likewise true in a [[skew field]] (which for this reason is called a [[division ring]]). However, in other rings, division by nonzero elements may also pose problems. For example, the ring '''Z'''/6'''Z''' of integers mod 6. The meaning of the expression <math>\textstyle\frac{2}{2}</math> should be the solution ''x'' of the equation <math>2x = 2</math>.  But in the ring '''Z'''/6'''Z''', 2 is not invertible under multiplication.  This equation has two distinct solutions, ''x'' = 1 and ''x'' = 4, so the expression <math>\textstyle\frac{2}{2}</math> is [[Defined and undefined|undefined]].
 
In field theory, the expression <math>\textstyle\frac{a}{b}</math> is only shorthand for the formal expression ''ab''<sup>−1</sup>, where ''b''<sup>−1</sup> is the multiplicative inverse of ''b''. Since the field axioms only guarantee the existence of such inverses for nonzero elements, this expression has no meaning when ''b'' is zero.  Modern texts include the axiom 0&nbsp;≠&nbsp;1 for fields so that the [[zero ring]] is excluded from being a field.
 
==In computer arithmetic==
[[File:SpeedCrunch divide by zero.png|thumb|In the SpeedCrunch calculator application, when a number is divided by zero the answer box displays “Error: Divide by zero”.]]
[[File:TI86 Calculator DivByZero.jpg|thumb|Most calculators, such as this [[Texas Instruments]] [[TI-86]], will halt execution and display an error message when the user or a running program attempts to divide by zero.]]
The [[IEEE floating-point standard]], supported by almost all modern [[floating-point unit]]s, specifies that every [[floating point]] arithmetic operation, including division by zero, has a well-defined result. The standard supports [[signed zero]], as well as [[infinity]] and [[NaN]] (''not a number''). There are two zeroes, +0 (''positive zero'') and −0 (''negative zero'') and this removes any ambiguity when dividing. In [[IEEE 754]] arithmetic, ''a''&nbsp;÷&nbsp;+0 is positive infinity when ''a'' is positive, negative infinity when ''a'' is negative, and NaN when ''a''&nbsp;=&nbsp;±0. The infinity signs change when dividing by [[−0 (number)|−0]] instead.
 
The justification for this definition is to preserve the sign of the result in case of [[arithmetic underflow]].<ref>{{cite journal|last=Cody|first=W.J.|title=Analysis of Proposals for the Floating-Point Standard|journal=Computer|date=March 1981|volume=14|issue=3|pages=65|doi=10.1109/C-M.1981.220379|url=http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1667286|accessdate=11 September 2012|quote=With appropriate care to be certain that the algebraic signs are not determined by rounding error, the affine mode preserves order relations while fixing up overflow. Thus, for example, the reciprocal of a negative number which underflows is still negative.}}</ref> For example, in the double-precision computation 1/(''x''/2), where ''x'' = ±2<sup>−149</sup>, the computation ''x''/2 underflows and produces ±0 with sign matching ''x'', and the result will be ±∞ with sign matching ''x''. The sign will match that of the exact result ±2<sup>150</sup>, but the magnitude of the exact result is too large to represent, so infinity is used to indicate overflow.
 
Integer division by zero is usually handled differently from floating point since there is no integer representation for the result. Some processors generate an [[exception handling|exception]] when an attempt is made to divide an integer by zero, although others will simply continue and generate an incorrect result for the division. The result depends on how division is implemented, and can either be zero, or sometimes the largest possible integer.
 
Because of the improper algebraic results of assigning any value to division by zero, many computer [[programming language]]s  (including those used by [[calculator]]s) explicitly forbid the execution of the operation and may prematurely halt a program that attempts it, sometimes reporting a "Divide by zero" error. In these cases, if some special behavior is desired for division by zero, the condition must be explicitly tested (for example, using an [[if statement]]). Some programs (especially those that use [[fixed-point arithmetic]] where no dedicated floating-point hardware is available) will use behavior similar to the IEEE standard, using large positive and negative numbers to approximate infinities. In some programming languages, an attempt to divide by zero results in [[undefined behavior]]. The graphical programming language [[Scratch (programming language)|Scratch 2]] used in many schools returns Infinity or -Infinity depending on the sign of the dividend.
 
In [[two's complement]] arithmetic, attempts to divide the smallest signed integer by <math>-1</math> are attended by similar problems, and are handled with the same range of solutions, from explicit error conditions to [[undefined behavior]].
 
Most calculators will either return an error or state that 1/0 is undefined, however some [[Texas Instruments|TI]] and [[Hewlett Packard|HP]] graphing calculators will evaluate (1/0)<sup>2</sup> to ∞.
 
More advanced [[computer algebra systems]] will return an infinity as a result for division by zero; for instance, [[Microsoft Math]] and [[Mathematica]] will show a ''ComplexInfinity'' result.
 
===Historical accidents===
* On September 21, 1997, a division by zero error on board the [[USS Yorktown (CG-48)|USS ''Yorktown'' (CG-48)]] ''Remote Data Base Manager'' brought down all the machines on the network, causing the ship's propulsion system to fail.<ref>{{cite news|url=http://www.wired.com/news/technology/0,1282,13987,00.html|title=Sunk by Windows NT|date=1998-07-24|work=[[Wired News]]}}</ref><ref>{{cite web|url=http://www.cs.berkeley.edu/~wkahan/Boulder.pdf|title=Desperately Needed Remedies for the Undebuggability of Large Floating-Point Computations in Science and Engineering|author=William Kahan|date=14 October 2011}}</ref>
 
==See also==
* [[Asymptote]]
* [[Well-defined|Defined and undefined]]
* [[Indeterminate form]]
* [[Zero divisor]]
 
==References==
===Notes===
{{reflist}}
 
===Sources===
{{refbegin}}
* [[Patrick Suppes]] 1957 (1999 Dover edition), ''Introduction to Logic'', Dover Publications, Inc., Mineola, New York. ISBN 0-486-40687-3 (pbk.). This book is in print and readily available. Suppes's §8.5 ''The Problem of Division by Zero'' begins this way: "That everything is not for the best in this best of all possible worlds, even in mathematics, is well illustrated by the vexing problem of defining the operation of division in the elementary theory of arithmetic" (p.&nbsp;163). In his §8.7 '''Five Approaches to Division by Zero''' he remarks that "...there is no uniformly satisfactory solution" (p.&nbsp;166)
* Charles Seife 2000, ''Zero: The Biography of a Dangerous Idea'', Penguin Books, NY, ISBN 0 14 02.9647 6 (pbk.). This award-winning book is very accessible. Along with the fascinating history of (for some) an abhorrent notion and others a cultural asset, describes how zero is misapplied with respect to multiplication and division.
* [[Alfred Tarski]] 1941 (1995 Dover edition), ''Introduction to Logic and to the Methodology of Deductive Sciences'', Dover Publications, Inc., Mineola, New York. ISBN 0-486-28462-X (pbk.). Tarski's §53 '''Definitions whose definiendum contains the identity sign''' discusses how mistakes are made (at least with respect to zero). He ends his chapter "(A discussion of this rather difficult problem [exactly one number satisfying a definiens] will be omitted here.*)" (p.&nbsp;183).  The * points to Exercise #24 (p.&nbsp;189) wherein he asks for a proof of the following: "In section 53, the definition of the number '0' was stated by way of an example. To be certain this definition does not lead to a contradiction, it should be preceded by the following theorem: ''There exists exactly one number x such that, for any number y, one has: y + x = y''"
{{refend}}
 
===Further reading===
{{wikinews|British computer scientist's new "nullity" idea provokes reaction from mathematicians}}
{{refbegin}}
* Jakub Czajko (July 2004) "{{doi-inline|10.1016/j.chaos.2003.12.046|On Cantorian spacetime over number systems with division by zero}}", ''Chaos, Solitons and Fractals'', volume 21, number 2, pages 261–271.
*{{cite web|url=http://www.badscience.net/?p=335|title=Maths Professor Divides By Zero, Says BBC|date=2006-12-07|author=[[Ben Goldacre]]}}
*[http://www.metaphysica.de/texte/mp2005_2-Cooke.pdf To Continue with Continuity] ''Metaphysica'' 6, pp.&nbsp;91–109, a philosophy paper from 2005, reintroduced the (ancient Indian) idea of an applicable whole number equal to 1/0, in a more modern (Cantorian) style.
*[http://www.edugain.com/blog/2013/12/19/the-zero-story-division-by-zero The Zero Story – Division by zero]
{{refend}}
 
[[Category:Zero]]
[[Category:Division]]
[[Category:Computer arithmetic]]
[[Category:Fractions]]
[[Category:Mathematical analysis]]
[[Category:Software anomalies]]
[[Category:Computer errors]]
 
{{Link GA|ja}}
 
[[de:Null#Division]]

Latest revision as of 23:10, 26 December 2014

Nothing to say about myself I think.
Enjoying to be a member of wmflabs.org.
I just wish I am useful at all

My web-site - hemorrhoids surgery