|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| {{Continuum mechanics|cTopic=[[Solid mechanics]]}}
| | In this series of articles we've discussed many free increasing visitor count tactics including e-mail marketing to 3rd party blogging to guide marketing.These could all create reliable online network marketing leads. There is another important strategy which should not be overlooked as it can certainly construction longlasting website traffic as well. You should strongly look at a viral video marketing technique as part of your marketing mix.<br><br>~ Article Marketing can bring in a great amount of prospects! It's just like blogging when you write articles that interest other's. In exchange they'll visit your other websites connected to your Posts.<br><br>That is another a serious common type of online advertising. You are sometimes warned by your browser about any of it having blocked an appear, When you visit a specific site. At other moments, when you enter a website, before you can view this content you need to, you are designed to view a popup advertising of the particular corporation. This kind of internet marketing is known as intrusive and therefore windows are permitted with blockers.<br><br><br><br>Today we're taking a look at internet marketers who make money and really finish points. They centered on something long enough till it begin glowing fruit. Should you keep a magnified glass long enough, the heat of the sun is likely to make a leaf catch flame. Finally may be the "Laserlight 3000" concentration.<br><br>A fruitful [http://www.linkedin.com/pub/jordan-kurland/a/618/581 Jordan Kurland] method is community engagement. Article answers to questions individuals are asking. You can begin a name yourself as someone possessing expertise and is honest. By expressing thoughts and suggestions within an internet marketing forum you can brand yourself being an expert.<br><br>Ezine writing. This is another way to strengthen your expert status online. This web software will allow you to send your clients with educational and valuable newsletters through the help of your auto responders. As in article promotion and forum posting, this may give you to be able to show to your marketplace you can be trusted by them and that you're very capable. So you can quickly drive your readers to your internet website Do not forget to put your internet site's URL on every publication you ship.<br><br>Furthermore, it's free! You don't have to pay a web designer very high fees just to get your site off the ground. You can set up your WordPress site fully for free, creating WordPress exceedingly cost-effective for your website needs. The only real price is for a domain and hosting, which can be minimum.<br><br>That's the strength and control the Internet provides that you'll need certainly to snatch when possible. Sure it might sound complicated but itIs planning to be well worth it after you begin to start creating an income with this advertising machine. |
| In [[continuum mechanics]], the '''infinitesimal strain theory''' is a mathematical approach to the description of the [[deformation (mechanics)|deformation]] of a solid body in which the [[Displacement (vector)|displacements]] of the material [[particle]]s are assumed to be much smaller (indeed, [[infinitesimally]] smaller) than any relevant dimension of the body; so that its geometry and the constitutive properties of the material (such as [[density]] and [[stiffness]]) at each point of space can be assumed to be unchanged by the deformation. | |
| | |
| With this assumption, the equations of continuum mechanics are considerably simplified. This approach may also be called '''small deformation theory''', '''small displacement theory''', or '''small displacement-gradient theory'''. It is contrasted with the [[finite strain theory]] where the opposite assumption is made.
| |
| | |
| The infinitesimal strain theory is commonly adopted in civil and mechanical engineering for the [[stress analysis]] of structures built from relatively stiff [[elasticity (physics)|elastic]] materials like [[concrete]] and [[steel]], since a common goal in the design of such structures is to minimize their deformation under typical [[Structural load|loads]].
| |
| | |
| ==Infinitesimal strain tensor==
| |
| | |
| For ''infinitesimal deformations'' of a [[Continuum mechanics|continuum body]], in which the displacements and the [[Deformation (mechanics)#Displacement|displacement gradients]] are small compared to unity, i.e., <math>\|\mathbf u\| \ll 1 \,\!</math> and <math>\|\nabla \mathbf u\| \ll 1 \,\!</math>, it is possible to perform a ''geometric linearisation'' of the Lagrangian finite strain tensor <math>\mathbf E\,\!</math>, and the Eulerian finite strain tensor <math>\mathbf e\,\!</math>. In such a linearisation, the non-linear or second-order terms of the finite strain tensor are neglected. Thus we have
| |
| | |
| :<math>\mathbf E =\frac{1}{2}\left(\nabla_{\mathbf X}\mathbf u + (\nabla_{\mathbf X}\mathbf u)^T + \nabla_{\mathbf X}\mathbf u(\nabla_{\mathbf X}\mathbf u)^T\right)\approx \frac{1}{2}\left(\nabla_{\mathbf X}\mathbf u + (\nabla_{\mathbf X}\mathbf u)^T\right)\,\!</math>
| |
| or
| |
| :<math>E_{KL}=\frac{1}{2}\left(\frac{\partial U_K}{\partial X_L}+\frac{\partial U_L}{\partial X_K}+\frac{\partial U_M}{\partial X_K}\frac{\partial U_M}{\partial X_L}\right)\approx \frac{1}{2}\left(\frac{\partial U_K}{\partial X_L}+\frac{\partial U_L}{\partial X_K}\right)\,\!</math>
| |
| and
| |
| :<math>\mathbf e =\frac{1}{2}\left(\nabla_{\mathbf x}\mathbf u + (\nabla_{\mathbf x}\mathbf u)^T - \nabla_{\mathbf x}\mathbf u(\nabla_{\mathbf x}\mathbf u)^T\right)\approx \frac{1}{2}\left(\nabla_{\mathbf x}\mathbf u + (\nabla_{\mathbf x}\mathbf u)^T\right)\,\!</math>
| |
| or
| |
| :<math>e_{rs}=\frac{1}{2}\left(\frac{\partial u_r}{\partial x_s} +\frac{\partial u_s}{\partial x_r}-\frac{\partial u_k}{\partial x_r}\frac{\partial u_k}{\partial x_s}\right)\approx \frac{1}{2}\left(\frac{\partial u_r}{\partial x_s} +\frac{\partial u_s}{\partial x_r}\right)\,\!</math>
| |
| | |
| This linearisation implies that the Lagrangian description and the Eulerian description are approximately the same as there is little difference in the material and spatial coordinates of a given material point in the continuum. Therefore, the material displacement gradient components and the spatial displacement gradient components are approximately equal. Thus we have
| |
| | |
| :<math>\mathbf E \approx \mathbf e \approx \boldsymbol \varepsilon = \frac{1}{2}\left((\nabla\mathbf u)^T + \nabla\mathbf u\right) \qquad </math>
| |
| or
| |
| <math>\qquad E_{KL}\approx e_{rs}\approx\varepsilon_{ij}=\frac{1}{2}\left(u_{i,j}+u_{j,i}\right)\,\!</math>
| |
| | |
| where <math>\varepsilon_{ij}\,\!</math> are the components of the ''infinitesimal strain tensor'' <math>\boldsymbol \varepsilon\,\!</math>, also called ''Cauchy's strain tensor'', ''linear strain tensor'', or ''small strain tensor''.
| |
| | |
| :<math>\begin{align}
| |
| \varepsilon_{ij} &= \frac{1}{2}\left(u_{i,j}+u_{j,i}\right) \\
| |
| &=
| |
| \left[\begin{matrix}
| |
| \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
| |
| \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\
| |
| \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \\
| |
| \end{matrix}\right] \\
| |
| &=
| |
| \left[\begin{matrix}
| |
| \frac{\partial u_1}{\partial x_1} & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2}+\frac{\partial u_2}{\partial x_1}\right) & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3}+\frac{\partial u_3}{\partial x_1}\right) \\
| |
| \frac{1}{2} \left(\frac{\partial u_2}{\partial x_1}+\frac{\partial u_1}{\partial x_2}\right) & \frac{\partial u_2}{\partial x_2} & \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3}+\frac{\partial u_3}{\partial x_2}\right) \\
| |
| \frac{1}{2} \left(\frac{\partial u_3}{\partial x_1}+\frac{\partial u_1}{\partial x_3}\right) & \frac{1}{2} \left(\frac{\partial u_3}{\partial x_2}+\frac{\partial u_2}{\partial x_3}\right) & \frac{\partial u_3}{\partial x_3} \\
| |
| \end{matrix}\right] \end{align} </math>
| |
| | |
| or using different notation:
| |
| :<math>\left[\begin{matrix}
| |
| \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\
| |
| \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\
| |
| \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \\
| |
| \end{matrix}\right]
| |
| =
| |
| \left[\begin{matrix}
| |
| \frac{\partial u_x}{\partial x} & \frac{1}{2} \left(\frac{\partial u_x}{\partial y}+\frac{\partial u_y}{\partial x}\right) & \frac{1}{2} \left(\frac{\partial u_x}{\partial z}+\frac{\partial u_z}{\partial x}\right) \\
| |
| \frac{1}{2} \left(\frac{\partial u_y}{\partial x}+\frac{\partial u_x}{\partial y}\right) & \frac{\partial u_y}{\partial y} & \frac{1}{2} \left(\frac{\partial u_y}{\partial z}+\frac{\partial u_z}{\partial y}\right) \\
| |
| \frac{1}{2} \left(\frac{\partial u_z}{\partial x}+\frac{\partial u_x}{\partial z}\right) & \frac{1}{2} \left(\frac{\partial u_z}{\partial y}+\frac{\partial u_y}{\partial z}\right) & \frac{\partial u_z}{\partial z} \\
| |
| \end{matrix}\right] \,\!</math>
| |
| | |
| Furthermore, since the [[deformation gradient]] can be expressed as <math>\boldsymbol{F} = \boldsymbol{\nabla}\mathbf{u} + \boldsymbol{I}</math> where <math>\boldsymbol{I}</math> is the second-order identity tensor, we have
| |
| | |
| :<math>\boldsymbol\varepsilon=\frac{1}{2}\left(\boldsymbol{F}^T+\boldsymbol{F}\right)-\boldsymbol{I}\,\!</math>
| |
| | |
| Also, from the general expression for the Lagrangian and Eulerian finite strain tensors we have
| |
| | |
| :<math>
| |
| \begin{align}
| |
| \mathbf E_{(m)}& =\frac{1}{2m}(\mathbf U^{2m}-\boldsymbol{I}) = \frac{1}{2m}[(\boldsymbol{F}^T\boldsymbol{F})^m - \boldsymbol{I}] \approx \frac{1}{2m}[\{\boldsymbol{\nabla}\mathbf{u}+(\boldsymbol{\nabla}\mathbf{u})^T + \boldsymbol{I}\}^m - \boldsymbol{I}]\approx \boldsymbol{\varepsilon}\\
| |
| \mathbf e_{(m)}& =\frac{1}{2m}(\mathbf V^{2m}-\boldsymbol{I})= \frac{1}{2m}[(\boldsymbol{F}\boldsymbol{F}^T)^m - \boldsymbol{I}]\approx \boldsymbol{\varepsilon}
| |
| \end{align}
| |
| </math>
| |
| | |
| ==Geometric derivation of the infinitesimal strain tensor==
| |
| [[Image:2D geometric strain.svg|400px|right|thumb|Figure 1. Two-dimensional geometric deformation of an infinitesimal material element.]]
| |
| Consider a two-dimensional deformation of an infinitesimal rectangular material element with dimensions <math>dx\,\!</math> by <math>dy\,\!</math> (Figure 1), which after deformation, takes the form of a rhombus. From the geometry of Figure 1 we have
| |
| | |
| :<math>\begin{align}
| |
| \overline {ab} &= \sqrt{\left(dx+\frac{\partial u_x}{\partial x}dx \right)^2 + \left( \frac{\partial u_y}{\partial x}dx \right)^2} \\
| |
| &= \sqrt{1+2\frac{\partial u_x}{\partial x}+\left(\frac{\partial u_x}{\partial x}\right)^2 + \left(\frac{\partial u_y}{\partial x}\right)^2}dx \\
| |
| \end{align}\,\!</math>
| |
| | |
| For very small displacement gradients, i.e., <math>\|\nabla \mathbf u\| \ll 1 \,\!</math>, we have
| |
| | |
| :<math>\overline {ab} \approx dx +\frac{\partial u_x}{\partial x}dx\,\!</math>
| |
| | |
| The [[Deformation (mechanics)#Strain measures|normal strain]] in the <math>x\,\!</math>-direction of the rectangular element is defined by
| |
| | |
| :<math>\varepsilon_x = \frac{\overline {ab}-\overline {AB}}{\overline {AB}}\,\!</math>
| |
| and knowing that <math>\overline {AB}= dx\,\!</math>, we have
| |
| | |
| :<math>\varepsilon_x = \frac{\partial u_x}{\partial x}\,\!</math>
| |
| | |
| Similarly, the normal strain in the <math>y\,\!</math>-direction, and <math>z\,\!</math>-direction, becomes
| |
| :<math>\varepsilon_y = \frac{\partial u_y}{\partial y} \quad , \qquad \varepsilon_z = \frac{\partial u_z}{\partial z}\,\!</math>
| |
| | |
| The [[Deformation (mechanics)#Strain measures|engineering shear strain]], or the change in angle between two originally orthogonal material lines, in this case line <math>\overline {AC}\,\!</math> and <math>\overline {AB}\,\!</math>, is defined as
| |
| | |
| :<math>\gamma_{xy}= \alpha + \beta\,\!</math>
| |
| | |
| From the geometry of Figure 1 we have
| |
| | |
| :<math>\tan \alpha=\frac{\dfrac{\partial u_y}{\partial x}dx}{dx+\dfrac{\partial u_x}{\partial x}dx}=\frac{\dfrac{\partial u_y}{\partial x}}{1+\dfrac{\partial u_x}{\partial x}} \quad , \qquad \tan \beta=\frac{\dfrac{\partial u_x}{\partial y}dy}{dy+\dfrac{\partial u_y}{\partial y}dy}=\frac{\dfrac{\partial u_x}{\partial y}}{1+\dfrac{\partial u_y}{\partial y}}\,\!</math>
| |
| | |
| For small rotations, i.e. <math>\alpha\,\!</math> and <math>\beta\,\!</math> are <math>\ll 1\,\!</math> we have
| |
| | |
| :<math>\tan \alpha \approx \alpha \quad , \qquad \tan \beta \approx \beta\,\!</math>
| |
| | |
| and, again, for small displacement gradients, we have
| |
| | |
| :<math>\alpha=\frac{\partial u_y}{\partial x} \quad , \qquad \beta=\frac{\partial u_x}{\partial y}\,\!</math>
| |
| | |
| thus
| |
| | |
| :<math>\gamma_{xy}= \alpha + \beta = \frac{\partial u_y}{\partial x} + \frac{\partial u_x}{\partial y}\,\!</math>
| |
| By interchanging <math>x\,\!</math> and <math>y\,\!</math> and <math>u_x\,\!</math> and <math>u_y\,\!</math>, it can be shown that <math>\gamma_{xy} = \gamma_{yx}\,\!</math>
| |
| | |
| Similarly, for the <math>y\,\!</math>-<math>z\,\!</math> and <math>x\,\!</math>-<math>z\,\!</math> planes, we have
| |
| | |
| :<math>\gamma_{yz}=\gamma_{zy} = \frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \quad , \qquad \gamma_{zx}=\gamma_{xz}= \frac{\partial u_z}{\partial x} + \frac{\partial u_x}{\partial z}\,\!</math>
| |
| | |
| It can be seen that the tensorial shear strain components of the infinitesimal strain tensor can then be expressed using the engineering strain definition, <math>\gamma\,\!</math>, as
| |
| | |
| <math>\left[\begin{matrix}
| |
| \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\
| |
| \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\
| |
| \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \\
| |
| \end{matrix}\right] = \left[\begin{matrix}
| |
| \varepsilon_{xx} & \gamma_{xy}/2 & \gamma_{xz}/2 \\
| |
| \gamma_{yx}/2 & \varepsilon_{yy} & \gamma_{yz}/2 \\
| |
| \gamma_{zx}/2 & \gamma_{zy}/2 & \varepsilon_{zz} \\
| |
| \end{matrix}\right]\,\!</math>
| |
| | |
| ===Physical interpretation of the infinitesimal strain tensor===
| |
| From [[Finite deformation tensor|finite strain theory]] we have
| |
| | |
| :<math>d\mathbf{x}^2 - d\mathbf{X}^2 = d\mathbf X \cdot 2\mathbf E \cdot d\mathbf X \quad\text{or}\quad (dx)^2 - (dX)^2 = 2E_{KL}\,dX_K\,dX_L\,\!</math>
| |
| | |
| For infinitesimal strains then we have
| |
| | |
| :<math>d\mathbf{x}^2 - d\mathbf{X}^2 = d\mathbf X \cdot 2\mathbf{\boldsymbol \varepsilon} \cdot d\mathbf X \quad\text{or}\quad (dx)^2 - (dX)^2 = 2\varepsilon_{KL}\,dX_K\,dX_L\,\!</math>
| |
| | |
| Dividing by <math>(dX)^2\,\!</math> we have
| |
| | |
| :<math>\frac{dx-dX}{dX}\frac{dx+dX}{dX}=2\varepsilon_{ij}\frac{dX_i}{dX}\frac{dX_j}{dX}\,\!</math>
| |
| | |
| For small deformations we assume that <math>dx \approx dX\,\!</math>, thus the second term of the left hand side becomes: <math>\frac{dx+dX}{dX} \approx 2\,\!</math>.
| |
| | |
| Then we have
| |
| | |
| :<math>\frac{dx-dX}{dX}=\varepsilon_{ij}N_iN_j = \mathbf N \cdot \boldsymbol \varepsilon \cdot \mathbf N\,\!</math>
| |
| | |
| where <math>N_i=\frac{dX_i}{dX}\,\!</math>, is the unit vector in the direction of <math>d\mathbf X\,\!</math>, and the left-hand-side expression is the [[Deformation (mechanics)#Strain measures|normal strain]] <math>e_{(\mathbf N)}\,\!</math> in the direction of <math>\mathbf N\,\!</math>. For the particular case of <math>\mathbf N\,\!</math> in the <math>X_1\,\!</math> direction, i.e. <math>\mathbf N=\mathbf I_1\,\!</math>, we have
| |
| | |
| :<math>e_{(\mathbf I_1)}=\mathbf I_1 \cdot \boldsymbol \varepsilon \cdot \mathbf I_1=\varepsilon_{11}\,\!</math> | |
| | |
| Similarly, for <math>\mathbf N=\mathbf I_2\,\!</math> and <math>\mathbf N=\mathbf I_3\,\!</math> we can find the normal strains <math>\varepsilon_{22}\,\!</math> and <math>\varepsilon_{33}\,\!</math>, respectively. Therefore, the diagonal elements of the infinitesimal strain tensor are the normal strains in the coordinate directions.
| |
| | |
| === Strain transformation rules ===
| |
| If we choose an [[orthonormal basis|orthonormal coordinate system]] (<math>\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3</math>) we can write the tensor in terms of components with respect to those base vectors as
| |
| :<math>
| |
| \boldsymbol{\varepsilon} = \sum_{i=1}^3 \sum_{j=1}^3 \varepsilon_{ij} \mathbf{e}_i\otimes\mathbf{e}_j
| |
| </math>
| |
| In matrix form,
| |
| :<math>
| |
| \underline{\underline{\boldsymbol{\varepsilon}}} = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
| |
| \varepsilon_{12} & \varepsilon_{22} & \varepsilon_{23} \\
| |
| \varepsilon_{13} & \varepsilon_{23} & \varepsilon_{33} \end{bmatrix}
| |
| </math>
| |
| We can easily choose to use another orthonormal coordinate system (<math>\hat{\mathbf{e}}_1,\hat{\mathbf{e}}_2,\hat{\mathbf{e}}_3</math>) instead. In that case the components of the tensor are different, say
| |
| :<math>
| |
| \boldsymbol{\varepsilon} = \sum_{i=1}^3 \sum_{j=1}^3 \hat{\varepsilon}_{ij} \hat{\mathbf{e}}_i\otimes\hat{\mathbf{e}}_j \quad \implies \quad \underline{\underline{\boldsymbol{\varepsilon}}} = \begin{bmatrix} \hat{\varepsilon}_{11} & \hat{\varepsilon}_{12} & \hat{\varepsilon}_{13} \\
| |
| \hat{\varepsilon}_{12} & \hat{\varepsilon}_{22} & \hat{\varepsilon}_{23} \\
| |
| \hat{\varepsilon}_{13} & \hat{\varepsilon}_{23} & \hat{\varepsilon}_{33} \end{bmatrix}
| |
| </math>
| |
| The components of the strain in the two coordinate systems are related by
| |
| :<math>
| |
| \hat{\varepsilon}_{ij} = \ell_{ip}~\ell_{jq}~\varepsilon_{pq}
| |
| </math>
| |
| where the [[Einstein summation convention]] for repeated indices has been used and <math>\ell_{ij} = \hat{\mathbf{e}}_i\cdot\mathbf{e}_j</math>. In matrix form
| |
| :<math>
| |
| \underline{\underline{\hat{\boldsymbol{\varepsilon}}}} = \underline{\underline{\mathbf{L}}} ~\underline{\underline{\boldsymbol{\varepsilon}}}~ \underline{\underline{\mathbf{L}}}^T
| |
| </math>
| |
| or
| |
| :<math>
| |
| \begin{bmatrix} \hat{\varepsilon}_{11} & \hat{\varepsilon}_{12} & \hat{\varepsilon}_{13} \\
| |
| \hat{\varepsilon}_{21} & \hat{\varepsilon}_{22} & \hat{\varepsilon}_{23} \\
| |
| \hat{\varepsilon}_{31} & \hat{\varepsilon}_{32} & \hat{\varepsilon}_{33} \end{bmatrix}
| |
| = \begin{bmatrix} \ell_{11} & \ell_{12} & \ell_{13} \\ \ell_{21} & \ell_{22} & \ell_{23} \\ \ell_{31} & \ell_{32} & \ell_{33} \end{bmatrix}
| |
| \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
| |
| \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\
| |
| \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{bmatrix}
| |
| \begin{bmatrix} \ell_{11} & \ell_{12} & \ell_{13} \\ \ell_{21} & \ell_{22} & \ell_{23} \\ \ell_{31} & \ell_{32} & \ell_{33} \end{bmatrix}^T
| |
| </math>
| |
| | |
| === Strain invariants ===
| |
| Certain operations on the strain tensor give the same result without regard to which orthonormal coordinate system is used to represent the components of strain. The results of these operations are called '''strain invariants'''. The most commonly used strain invariants are
| |
| :<math>
| |
| \begin{align}
| |
| I_1 & = \mathrm{tr}(\boldsymbol{\varepsilon}) \\
| |
| I_2 & = \tfrac{1}{2}\{\mathrm{tr}(\boldsymbol{\varepsilon}^2) - [\mathrm{tr}(\boldsymbol{\varepsilon})]^2\} \\
| |
| I_3 & = \det(\boldsymbol{\varepsilon})
| |
| \end{align}
| |
| </math>
| |
| In terms of components
| |
| :<math>
| |
| \begin{align}
| |
| I_1 & = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33} \\
| |
| I_2 & = \varepsilon_{12}^2 + \varepsilon_{23}^2 + \varepsilon_{31}^2 - \varepsilon_{11}\varepsilon_{22} - \varepsilon_{22}\varepsilon_{33} - \varepsilon_{33}\varepsilon_{11} \\
| |
| I_3 & = \varepsilon_{11}(\varepsilon_{22}\varepsilon_{33} - \varepsilon_{23}^2) - \varepsilon_{12}(\varepsilon_{12}\varepsilon_{33}-\varepsilon_{23}\varepsilon_{31}) + \varepsilon_{13}(\varepsilon_{12}\varepsilon_{23}-\varepsilon_{22}\varepsilon_{31})
| |
| \end{align}
| |
| </math>
| |
| | |
| ===Principal strains===
| |
| It can be shown that it is possible to find a coordinate system (<math>\mathbf{n}_1,\mathbf{n}_2,\mathbf{n}_3</math>) in which the components of the strain tensor are
| |
| :<math>
| |
| \underline{\underline{\boldsymbol{\varepsilon}}} = \begin{bmatrix} \varepsilon_{1} & 0 & 0 \\
| |
| 0 & \varepsilon_{2} & 0 \\
| |
| 0 & 0 & \varepsilon_{3} \end{bmatrix} \quad \implies \quad \boldsymbol{\varepsilon} = \varepsilon_{1} \mathbf{n}_1\otimes\mathbf{n}_1 + \varepsilon_{2} \mathbf{n}_2\otimes\mathbf{n}_2 + \varepsilon_{3} \mathbf{n}_3\otimes\mathbf{n}_3
| |
| </math>
| |
| The components of the strain tensor in the (<math>\mathbf{n}_1,\mathbf{n}_2,\mathbf{n}_3</math>) coordinate system are called the '''principal strains''' and the directions <math>\mathbf{n}_i</math> are called the directions of principal strain. Since there are no shear strain components in this coordinate system, the principal strains represent the maximum and minimum stretches of an elemental volume.
| |
| | |
| If we are given the components of the strain tensor in an arbitrary orthonormal coordinate system, we can find the principal strains using an [[eigenvalue decomposition]] determined by solving the system of equations
| |
| :<math>
| |
| (\underline{\underline{\boldsymbol{\varepsilon}}} - \varepsilon_i~\underline{\underline{\mathbf{I}}})~\mathbf{n}_i = \underline{\underline{\mathbf{0}}}
| |
| </math>
| |
| This system of equations is equivalent to finding the vector <math>\mathbf{n}_i</math> along which the stress tensor becomes a pure stretch with no shear component. | |
| | |
| ===Volumetric strain{{anchor|Volumetric strain}}=== <!-- anchor: [[Volumetric strain]] redirects here -->
| |
| The ''dilatation'' (the relative variation of the volume) is the [[trace (matrix)|trace]] of the tensor:
| |
| :<math>\delta=\frac{\Delta V}{V_0} = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}\,\!</math>
| |
| Actually, if we consider a cube with an edge length ''a'', it is a quasi-cube after the deformation (the variations of the angles do not change the volume) with the dimensions <math>a \cdot (1 + \varepsilon_{11}) \times a \cdot (1 + \varepsilon_{22}) \times a \cdot (1 + \varepsilon_{33})\,\!</math> and ''V''<sub>0</sub> = ''a''<sup>3</sup>, thus
| |
| :<math>\frac{\Delta V}{V_0} = \frac{\left ( 1 + \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33} + \varepsilon_{11} \cdot \varepsilon_{22} + \varepsilon_{11} \cdot \varepsilon_{33}+ \varepsilon_{22} \cdot \varepsilon_{33} + \varepsilon_{11} \cdot \varepsilon_{22} \cdot \varepsilon_{33} \right ) \cdot a^3 - a^3}{a^3}\,\!</math>
| |
| as we consider small deformations,
| |
| :<math>1 \gg \varepsilon_{ii} \gg \varepsilon_{ii} \cdot \varepsilon_{jj} \gg \varepsilon_{11} \cdot \varepsilon_{22} \cdot \varepsilon_{33} \,\!</math>
| |
| therefore the formula.
| |
| | |
| [[Image:Approximation volume deformation.png|400px]]<br />
| |
| <small>Real variation of volume (top) and the approximated one (bottom): the green drawing shows the estimated volume and the orange drawing the neglected volume</small>
| |
| | |
| In case of pure shear, we can see that there is no change of the volume.
| |
| | |
| ===Strain deviator tensor===
| |
| The infinitesimal strain tensor <math>\varepsilon_{ij}\,\!</math>, similarly to the [[Cauchy stress tensor]], can be expressed as the sum of two other tensors:
| |
| # a '''mean strain tensor''' or '''volumetric strain tensor''' or '''spherical strain tensor''', <math>\varepsilon_M\delta_{ij}\,\!</math>, related to dilation or volume change; and
| |
| # a deviatoric component called the '''strain deviator tensor''', <math>\varepsilon'_{ij}\,\!</math>, related to distortion.
| |
| | |
| :<math>\varepsilon_{ij}= \varepsilon'_{ij} + \varepsilon_M\delta_{ij}\,\!</math>
| |
| | |
| where <math>\varepsilon_M\,\!</math> is the mean strain given by
| |
| | |
| :<math>\varepsilon_M=\frac{\varepsilon_{kk}}{3}=\frac{\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33}}{3}=\tfrac{1}{3}I^e_1\,\!</math>
| |
| | |
| The deviatoric strain tensor can be obtained by subtracting the mean strain tensor from the infinitesimal strain tensor:
| |
| | |
| :<math>\begin{align}
| |
| \ \varepsilon'_{ij} &= \varepsilon_{ij} - \frac{\varepsilon_{kk}}{3}\delta_{ij} \\
| |
| \left[{\begin{matrix}
| |
| \varepsilon'_{11} & \varepsilon'_{12} & \varepsilon'_{13} \\
| |
| \varepsilon'_{21} & \varepsilon'_{22} & \varepsilon'_{23} \\
| |
| \varepsilon'_{31} & \varepsilon'_{32} & \varepsilon'_{33} \\
| |
| \end{matrix}}\right]
| |
| &=\left[{\begin{matrix}
| |
| \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
| |
| \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\
| |
| \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \\
| |
| \end{matrix}}\right]-\left[{\begin{matrix}
| |
| \varepsilon_M & 0 & 0 \\
| |
| 0 & \varepsilon_M & 0 \\
| |
| 0 & 0 & \varepsilon_M \\
| |
| \end{matrix}}\right] \\
| |
| &=\left[{\begin{matrix}
| |
| \varepsilon_{11}-\varepsilon_M & \varepsilon_{12} & \varepsilon_{13} \\
| |
| \varepsilon_{21} & \varepsilon_{22}-\varepsilon_M & \varepsilon_{23} \\
| |
| \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33}-\varepsilon_M \\
| |
| \end{matrix}}\right] \\
| |
| \end{align}\,\!</math>
| |
| | |
| ===Octahedral strains===
| |
| Let (<math>\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3</math>) be the directions of the three principal strains. An '''octahedral plane''' is whose normal makes equal angles with the three principal directions. The engineering [[shear strain]] on an octahedral plane is called the '''octahedral shear strain''' and is given by
| |
| :<math>
| |
| \gamma_{\mathrm{oct}} = \tfrac{2}{3}\sqrt{(\varepsilon_1-\varepsilon_2)^2 + (\varepsilon_2-\varepsilon_3)^2 + (\varepsilon_3-\varepsilon_1)^2}
| |
| </math>
| |
| where <math>\varepsilon_1, \varepsilon_2, \varepsilon_3</math> are the principal strains. {{citation needed|date=January 2012}}
| |
| | |
| The [[normal strain]] on an octahedral plane is given by
| |
| :<math>
| |
| \varepsilon_{\mathrm{oct}} = \tfrac{1}{3}(\varepsilon_1 + \varepsilon_2 + \varepsilon_3)
| |
| </math>
| |
| {{citation needed|date=January 2012}}
| |
| | |
| === Equivalent strain ===
| |
| A scalar quantity called the '''equivalent strain''', or the [[von Mises]] equivalent strain, is often used to describe the state of strain in solids. Several definitions of equivalent strain can be found in the literature. A definition that is commonly used in the literature on [[plasticity (physics)|plasticity]] is
| |
| :<math>
| |
| \varepsilon_{\mathrm{eq}} = \sqrt{\tfrac{2}{3} \boldsymbol{\varepsilon}^{\mathrm{dev}}:\boldsymbol{\varepsilon}^{\mathrm{dev}}} = \sqrt{\tfrac{2}{3}\varepsilon_{ij}^{\mathrm{dev}}\varepsilon_{ij}^{\mathrm{dev}}}
| |
| ~;~~ \boldsymbol{\varepsilon}^{\mathrm{dev}} = \boldsymbol{\varepsilon} - \tfrac{1}{3}\mathrm{tr}(\boldsymbol{\varepsilon})~\boldsymbol{1}
| |
| </math>
| |
| This quantity is work conjugate to the equivalent stress defined as
| |
| :<math>
| |
| \sigma_{\mathrm{eq}} = \sqrt{\tfrac{3}{2} \boldsymbol{\sigma}^{\mathrm{dev}}:\boldsymbol{\sigma}^{\mathrm{dev}}}
| |
| </math>
| |
| | |
| ==Compatibility equations==
| |
| {{Main|Compatibility (mechanics)}}
| |
| For prescribed strain components <math>\varepsilon_{ij}\,\!</math> the strain tensor equation <math>u_{i,j}+u_{j,i}= 2 \varepsilon_{ij}\,\!</math> represents a system of six differential equations for the determination of three displacements components <math>u_i\,\!</math>, giving an over-determined system. Thus, a solution does not generally exist for an arbitrary choice of strain components. Therefore, some restrictions, named ''compatibility equations'', are imposed upon the strain components. With the addition of the three compatibility equations the number of independent equations is reduced to three, matching the number of unknown displacement components. These constraints on the strain tensor were discovered by [[Adhémar Jean Claude Barré de Saint-Venant|Saint-Venant]], and are called the "[[Saint-Venant's compatibility condition|Saint Venant compatibility equations]]".
| |
| | |
| The compatibility functions serve to assure a single-valued continuous displacement function <math>u_i\,\!</math>. If the elastic medium is visualised as a set of infinitesimal cubes in the unstrained state, after the medium is strained, an arbitrary strain tensor may not yield a situation in which the distorted cubes still fit together without overlapping.
| |
| | |
| In index notation, the compatibility equations are expressed as
| |
| :<math>\varepsilon_{ij,km}+\varepsilon_{km,ij}-\varepsilon_{ik,jm}-\varepsilon_{jm,ik}=0\,\!</math>
| |
| | |
| :{| class="collapsible collapsed" width="30%" style="text-align:left"
| |
| !Engineering notation
| |
| |-
| |
| |<math>\frac{\partial^2 \epsilon_x}{\partial y^2} + \frac{\partial^2 \epsilon_y}{\partial x^2} = 2 \frac{\partial^2 \epsilon_{xy}}{\partial x \partial y}\,\!</math>
| |
| | |
| <math>\frac{\partial^2 \epsilon_y}{\partial z^2} + \frac{\partial^2 \epsilon_z}{\partial y^2} = 2 \frac{\partial^2 \epsilon_{yz}}{\partial y \partial z}\,\!</math>
| |
| | |
| <math>\frac{\partial^2 \epsilon_x}{\partial z^2} + \frac{\partial^2 \epsilon_z}{\partial x^2} = 2 \frac{\partial^2 \epsilon_{zx}}{\partial z \partial x}\,\!</math>
| |
| | |
| <math>\frac{\partial^2 \epsilon_x}{\partial y \partial z} = \frac{\partial}{\partial x} \left ( -\frac{\partial \epsilon_{yz}}{\partial x} + \frac{\partial \epsilon_{zx}}{\partial y} + \frac{\partial \epsilon_{xy}}{\partial z}\right)\,\!</math>
| |
| | |
| <math>\frac{\partial^2 \epsilon_y}{\partial z \partial x} = \frac{\partial}{\partial y} \left ( \frac{\partial \epsilon_{yz}}{\partial x} - \frac{\partial \epsilon_{zx}}{\partial y} + \frac{\partial \epsilon_{xy}}{\partial z}\right)\,\!</math>
| |
| | |
| <math>\frac{\partial^2 \epsilon_z}{\partial x \partial y} = \frac{\partial}{\partial z} \left ( \frac{\partial \epsilon_{yz}}{\partial x} + \frac{\partial \epsilon_{zx}}{\partial y} - \frac{\partial \epsilon_{xy}}{\partial z}\right)\,\!</math>
| |
| |}
| |
| | |
| == Special cases ==
| |
| | |
| ===Plane strain===
| |
| [[Image:Plane strain.svg|500px|right|thumb|Plane strain state in a continuum.]]
| |
| In real engineering components, [[Stress (physics)|stress]] (and strain) are 3-D [[tensor]]s but in prismatic structures such as a long metal billet, the length of the structure is much greater than the other two dimensions. The strains associated with length, i.e., the normal strain <math>\varepsilon_{33}\,\!</math> and the shear strains <math>\varepsilon_{13}\,\!</math> and <math>\varepsilon_{23}\,\!</math> (if the length is the 3-direction) are constrained by nearby material and are small compared to the ''cross-sectional strains''. Plane strain is then an acceptable approximation. The [[strain tensor]] for plane strain is written as:
| |
| | |
| : <math>\underline{\underline{\boldsymbol{\varepsilon}}} = \begin{bmatrix}
| |
| \varepsilon_{11} & \varepsilon_{12} & 0 \\
| |
| \varepsilon_{21} & \varepsilon_{22} & 0 \\
| |
| 0 & 0 & 0\end{bmatrix}\,\!</math>
| |
| | |
| in which the double underline indicates a second order [[tensor]]. This strain state is called ''plane strain''. The corresponding stress tensor is:
| |
| | |
| : <math>\underline{\underline{\boldsymbol{\sigma}}} = \begin{bmatrix}
| |
| \sigma_{11} & \sigma_{12} & 0 \\
| |
| \sigma_{21} & \sigma_{22} & 0 \\
| |
| 0 & 0 & \sigma_{33}\end{bmatrix}\,\!</math>
| |
| | |
| in which the non-zero <math>\sigma_{33}\,\!</math> is needed to maintain the constraint <math>\epsilon_{33} = 0\,\!</math>. This stress term can be temporarily removed from the analysis to leave only the in-plane terms, effectively reducing the 3-D problem to a much simpler 2-D problem.
| |
| | |
| === Antiplane strain ===
| |
| {{main|Antiplane shear}}
| |
| Antiplane strain is another special state of strain that can occur in a body, for instance in a region close to a [[screw dislocation]]. The [[strain tensor]] for antiplane strain is given by
| |
| : <math>\underline{\underline{\boldsymbol{\varepsilon}}} = \begin{bmatrix}
| |
| 0 & 0 & \varepsilon_{13} \\
| |
| 0 & 0 & \varepsilon_{23}\\
| |
| \varepsilon_{13} & \varepsilon_{23} & 0\end{bmatrix}\,\!</math>
| |
| | |
| == Infinitesimal rotation tensor ==
| |
| The infinitesimal strain tensor is defined as
| |
| :<math>
| |
| \boldsymbol{\varepsilon} = \frac{1}{2} [\boldsymbol{\nabla}\mathbf{u} + (\boldsymbol{\nabla}\mathbf{u})^T]
| |
| </math>
| |
| Therefore the displacement gradient can be expressed as
| |
| :<math>
| |
| \boldsymbol{\nabla}\mathbf{u} = \boldsymbol{\varepsilon} + \boldsymbol{\omega}
| |
| </math> | |
| where
| |
| :<math>
| |
| \boldsymbol{\omega} := \frac{1}{2} [\boldsymbol{\nabla}\mathbf{u} - (\boldsymbol{\nabla}\mathbf{u})^T]
| |
| </math>
| |
| The quantity <math>\boldsymbol{\omega}</math> is the '''infinitesimal rotation tensor'''. This tensor is [[skew symmetric]]. For infinitesimal deformations the scalar components of <math>\boldsymbol{\omega}</math> satisfy the condition <math>|\omega_{ij}| \ll 1</math>. Note that the displacement gradient is small only if '''both''' the strain tensor and the rotation tensor are infinitesimal.
| |
| | |
| === The axial vector ===
| |
| A skew symmetric second-order tensor has three independent scalar components. These three components are used to define an '''axial vector''', <math>\mathbf{w}</math>, as follows
| |
| :<math>
| |
| \omega_{ij} = -\epsilon_{ijk}~w_k ~;~~ w_i = -\tfrac{1}{2}~\epsilon_{ijk}~\omega_{jk}
| |
| </math>
| |
| where <math>\epsilon_{ijk}</math> is the [[permutation symbol]]. In matrix form
| |
| :<math>
| |
| \underline{\underline{\boldsymbol{\omega}}} = \begin{bmatrix} 0 & -w_3 & w_2 \\ w_3 & 0 & -w_1 \\ -w_2 & w_1 & 0\end{bmatrix} ~;~~ \underline{\underline{\mathbf{w}}} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}
| |
| </math>
| |
| The axial vector is also called the '''infinitesimal rotation vector'''. The rotation vector is related to the displacement gradient by the relation
| |
| :<math>
| |
| \mathbf{w} = \tfrac{1}{2}~\boldsymbol{\nabla}\times\mathbf{u}
| |
| </math>
| |
| In index notation
| |
| :<math>
| |
| w_i = \tfrac{1}{2}~\epsilon_{ijk}~u_{k,j}
| |
| </math>
| |
| If <math>\lVert\boldsymbol{\omega}\rVert \ll 1 </math> and <math>\boldsymbol{\varepsilon} = \boldsymbol{0}</math> then the material undergoes an approximate rigid body rotation of magnitude <math>|\mathbf{w}|</math> around the vector <math>\mathbf{w}</math>.
| |
| | |
| === Relation between the strain tensor and the rotation vector ===
| |
| Given a continuous, single-valued displacement field <math>\mathbf{u}</math> and the corresponding infinitesimal strain tensor <math>\boldsymbol{\varepsilon}</math>, we have (see [[Tensor derivative (continuum mechanics)]])
| |
| :<math>
| |
| \boldsymbol{\nabla}\times\boldsymbol{\varepsilon} = e_{ijk}~\varepsilon_{lj,i}~\mathbf{e}_k\otimes\mathbf{e}_l
| |
| = \tfrac{1}{2}~e_{ijk}~[u_{l,ji} + u_{j,li}]~\mathbf{e}_k\otimes\mathbf{e}_l
| |
| </math>
| |
| Since a change in the order of differentiation does not change the result, <math>u_{l,ji} = u_{l,ij}\,</math>. Therefore
| |
| :<math>
| |
| \,e_{ijk} u_{l,ji} = (e_{12k}+e_{21k}) u_{l,12} + (e_{13k}+e_{31k}) u_{l,13} + (e_{23k} + e_{32k}) u_{l,32} = 0
| |
| </math>
| |
| Also
| |
| :<math>
| |
| \tfrac{1}{2}~e_{ijk}~u_{j,li} = \left(\tfrac{1}{2}~e_{ijk}~u_{j,i}\right)_{,l} = \left(\tfrac{1}{2}~e_{kij}~u_{j,i}\right)_{,l} = w_{k,l}
| |
| </math>
| |
| Hence
| |
| :<math>
| |
| \boldsymbol{\nabla}\times\boldsymbol{\varepsilon} = w_{k,l}~\mathbf{e}_k\otimes\mathbf{e}_l = \boldsymbol{\nabla}\mathbf{w}
| |
| </math>
| |
| | |
| === Relation between rotation tensor and rotation vector ===
| |
| From an important identity regarding the [[Tensor derivative (continuum mechanics)|curl of a tensor]] we know that for a continuous, single-valued displacement field <math>\mathbf{u}</math>,
| |
| :<math>
| |
| \boldsymbol{\nabla}\times(\boldsymbol{\nabla}\mathbf{u}) = \boldsymbol{0}.
| |
| </math>
| |
| Since <math>\boldsymbol{\nabla}\mathbf{u} = \boldsymbol{\varepsilon} + \boldsymbol{\omega}</math> we have
| |
| <math>
| |
| \boldsymbol{\nabla}\times\boldsymbol{\omega} = -\boldsymbol{\nabla}\times\boldsymbol{\varepsilon} = - \boldsymbol{\nabla}\mathbf{w}.
| |
| </math>
| |
| | |
| == Strain tensor in cylindrical coordinates ==
| |
| In [[cylindrical polar coordinates]] (<math>r, \theta, z</math>), the displacement vector can be written as
| |
| :<math>
| |
| \mathbf{u} = u_r~\mathbf{e}_r + u_\theta~\mathbf{e}_\theta + u_z~\mathbf{e}_z
| |
| </math>
| |
| The components of the strain tensor in a cylindrical coordinate system are given by <ref name=Slaughter>Slaughter, W. S., 2002, '''The Linearised Theory of Elasticity''', Birkhauser.</ref>
| |
| :<math>
| |
| \begin{align}
| |
| \varepsilon_{rr} & = \cfrac{\partial u_r}{\partial r} \\
| |
| \varepsilon_{\theta\theta} & = \cfrac{1}{r}\left(\cfrac{\partial u_\theta}{\partial \theta} + u_r\right) \\
| |
| \varepsilon_{zz} & = \cfrac{\partial u_z}{\partial z} \\
| |
| \varepsilon_{r\theta} & = \cfrac{1}{2}\left(\cfrac{1}{r}\cfrac{\partial u_r}{\partial \theta} + \cfrac{\partial u_\theta}{\partial r}- \cfrac{u_\theta}{r}\right) \\
| |
| \varepsilon_{\theta z} & = \cfrac{1}{2}\left(\cfrac{\partial u_\theta}{\partial z} + \cfrac{1}{r}\cfrac{\partial u_z}{\partial \theta}\right) \\
| |
| \varepsilon_{zr} & = \cfrac{1}{2}\left(\cfrac{\partial u_r}{\partial z} + \cfrac{\partial u_z}{\partial r}\right)
| |
| \end{align}
| |
| </math>
| |
| | |
| == Strain tensor in spherical coordinates ==
| |
| In [[spherical coordinates]] (<math>r, \theta, \phi</math>), the displacement vector can be written as
| |
| [[File:3D Spherical.svg|thumb|240px|right|Spherical coordinates (''r'', ''θ'', ''φ'') as commonly used in ''physics'': radial distance ''r'', polar angle ''θ'' ([[theta]]), and azimuthal angle ''φ'' ([[phi]]). The symbol ''ρ'' ([[rho]]) is often used instead of ''r''.]]
| |
| :<math>
| |
| \mathbf{u} = u_r~\mathbf{e}_r + u_\theta~\mathbf{e}_\theta + u_\phi~\mathbf{e}_\phi
| |
| </math>
| |
| The components of the strain tensor in a spherical coordinate system are given by <ref name=Slaughter/>
| |
| :<math>
| |
| \begin{align}
| |
| \varepsilon_{rr} & = \cfrac{\partial u_r}{\partial r} \\
| |
| \varepsilon_{\theta\theta} & = \cfrac{1}{r}\left(\cfrac{\partial u_\theta}{\partial \theta} + u_r\right) \\
| |
| \varepsilon_{\phi\phi} & = \cfrac{1}{r\sin\theta}\left(\cfrac{\partial u_\phi}{\partial \phi} + u_r\sin\theta + u_\theta\cos\theta\right)\\
| |
| \varepsilon_{r\theta} & = \cfrac{1}{2}\left(\cfrac{1}{r}\cfrac{\partial u_r}{\partial \theta} + \cfrac{\partial u_\theta}{\partial r}- \cfrac{u_\theta}{r}\right) \\
| |
| \varepsilon_{\theta \phi} & = \cfrac{1}{2r}\left(\cfrac{1}{\sin\theta}\cfrac{\partial u_\theta}{\partial \phi} + \cfrac{\partial u_\phi}{\partial \theta} - u_\phi\cot\theta\right) \\
| |
| \varepsilon_{\phi r} & = \cfrac{1}{2}\left(\cfrac{1}{r\sin\theta}\cfrac{\partial u_r}{\partial \phi} + \cfrac{\partial u_\phi}{\partial r} - \cfrac{u_\phi}{r}\right)
| |
| \end{align}
| |
| </math>
| |
| | |
| ==See also==
| |
| *[[Deformation (mechanics)]]
| |
| * [[Compatibility (mechanics)]]
| |
| *[[Stress (physics)|Stress]]
| |
| *[[Strain gauge]]
| |
| *[[Stress–strain curve]]
| |
| *[[Hooke's law]]
| |
| *[[Poisson's ratio]]
| |
| *[[Finite strain theory]]
| |
| *[[Strain rate]]
| |
| *[[Stress (mechanics)#Plane stress|Plane stress]]
| |
| *[[Digital image correlation]]
| |
| | |
| == References ==
| |
| {{Reflist}}
| |
| | |
| == External links ==
| |
| | |
| {{Branches of physics}}
| |
| {{Infinitesimals}}
| |
| | |
| {{DEFAULTSORT:Infinitesimal Strain Theory}}
| |
| [[Category:Physical quantities]]
| |
| [[Category:Elasticity (physics)]]
| |
| [[Category:Materials science]]
| |
| [[Category:Solid mechanics]]
| |
| [[Category:Mechanics]]
| |
| | |
| [[da:Tøjning]]
| |
| [[de:Dehnung]]
| |
| [[ko:변형도]]
| |
| [[it:Deformazione]]
| |
| [[he:מעוות (הנדסה)]]
| |
| [[hu:Alakváltozás]]
| |
| [[nl:Rek (fysica)]]
| |
| [[ja:ひずみ]]
| |
| [[pl:Odkształcenie]]
| |
| [[pt:Deformação relativa]]
| |
| [[sl:Relativni raztezek]]
| |
| [[sv:Töjning]]
| |
| [[uk:Відносне видовження]]
| |
| [[zh:应变 (物理学)]]
| |