Ferroelectricity: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Zhangxiao10
en>Rjwilmsi
top: 10.1103/PhysRev.15.505
 
Line 1: Line 1:
'''Magnetoresistance''' is the property of a material to change the value of its [[electrical resistance]] when an external [[magnetic field]] is applied to it. The effect was first discovered by [[William Thomson, 1st Baron Kelvin|William Thomson]] (better known as Lord Kelvin) in 1851, but he was unable to lower the electrical resistance of anything by more than 5%. This effect was later called ordinary magnetoresistance (OMR). More recent researchers discovered materials (and multilayer devices) showing [[giant magnetoresistance]] (GMR), [[colossal magnetoresistance]] (CMR) and [[tunnel magnetoresistance]] (TMR). Generally, resistance can depend either on magnetization (controlled by applied magnetic field) or on magnetic field directly.
Hello, dear friend! My name is Tangela. I smile that I can unify to the entire world. I live in Netherlands, in the south region. I dream to head to the different nations, to obtain familiarized with interesting individuals.<br><br>Feel free to surf to my website ... [http://Fordcrewcassel.de/index.php?site=profile&id=31378 how to get free fifa 15 coins]
 
==Discovery==
William Thomson (Lord Kelvin) first discovered ordinary magnetoresistance in 1851. He experimented with pieces of iron and discovered that the resistance increases when the current is in the same direction as the magnetic force and decreases when the current is at 90° to the magnetic force. He then did the same experiment with nickel and found that it was affected in the same way but the magnitude of the effect was greater. This effect is referred to as anisotropic magnetoresistance (AMR).
 
[[Image:Corbino disc.PNG|thumbnail|250px|Corbino disc. With the magnetic field turned off, a radial current flows in the conducting annulus due to the battery connected between the (infinite) conductivity rims. When a magnetic field along the axis is turned on, the [[Lorentz force]] drives a circular component of current, and the resistance between the inner and outer rims goes up. This increase in resistance due to the magnetic field is called ''magnetoresistance''.]]
 
==Geometrical magnetoresistance==
An example of magnetoresistance due to direct action of magnetic field on electric current can be studied on a Corbino disc (see Figure).
It consists of a conducting annulus with perfectly conducting rims. Without a magnetic field, the battery drives a radial current between the rims. When a magnetic field parallel to the axis of the annulus is applied, a circular component of current flows as well, due to the [[Lorentz force]]. A discussion of the disc is provided by Giuliani.<ref name=Giuliani>{{cite journal |author=G Giuliani, |title=A general law for electromagnetic induction |year=2008 |journal=EPS |volume=81 |url=http://www.iop.org/EJ/article/0295-5075/81/6/60002/epl_81_6_60002.html |doi=10.1209/0295-5075/81/60002 |pages=60002|bibcode = 2008EL.....8160002G |issue=6 }}</ref> Initial interest in this problem began with Boltzmann in 1886, and independently was re-examined by Corbino in 1911.<ref name=Giuliani/>
 
In a simple model, supposing the response to the Lorentz force is the same as for an electric field, the carrier velocity '''v''' is given by:
 
:<math> \mathbf{v} = \mu \left( \mathbf{E} + \mathbf{v \times B} \right), \ </math>
 
where μ = carrier mobility. Solving for the velocity, we find:
 
:<math>\mathbf{v} = \frac{ \mu}{1+(\mu B)^2} \left( \mathbf{E} + \mu \mathbf{E \times B} \right), \ </math>
 
where the reduction in mobility due to the '''B'''-field is apparent. Electric current (proportional to the radial component of velocity) will decrease with increasing magnetic field and hence the resistance of the device will increase. This magnetoresistive scenario depends sensitively on the device geometry and current lines and it '''does not rely on magnetic materials'''.
 
In a [[semiconductor]] with a single carrier type, the magnetoresistance is proportional to (1&nbsp;+&nbsp;(''μB'')<sup>2</sup>), where μ is the [[electron mobility|semiconductor mobility]] (units m<sup>2</sup>·V<sup>&minus;1</sup>·s<sup>&minus;1</sup> or T<sup>&nbsp;&minus;1</sup>) and ''B'' is the magnetic field (units [[tesla (unit)|tesla]]s). [[Indium antimonide]], an example of a high mobility semiconductor, could have an electron mobility above 4&nbsp;m<sup>2</sup>·V<sup>&minus;1</sup>·s<sup>&minus;1</sup> at 300&nbsp;K. So in a 0.25&nbsp;T field, for example the magnetoresistance increase would be 100%.
 
==Anisotropic magnetoresistance (AMR)==
[[File:AMR of Permalloy.png|thumbnail|250px|The resistance of a thin [[Permalloy]] film is shown here as a function of the angle of an applied external field.]]Thomson's experiments<ref>W. Thomson, Proc. Royal Soc. London,Vol. 8, (1856-1857), pp.546-550.</ref> are an example of AMR,<ref name=McGuirePotter>{{Cite doi|10.1109/TMAG.1975.1058782}}</ref>  property of a material in which a dependence of electrical resistance on the angle between the direction of electric current and direction of '''magnetization''' is observed. The effect arises from the simultaneous action of magnetization and [[Spin–orbit interaction|spin-orbit interaction]] and its detailed mechanism depends on the material. It can be for example due to a larger probability of s-d scattering of electrons in the direction of magnetization (which is controlled by the applied magnetic field). The net effect (in most materials) is that the electrical resistance has maximum value when the direction of current is parallel to the applied magnetic field. AMR of new materials is being investigated and magnitudes up to 50% have been observed in some ferromagnetic uranium compounds.<ref name="Wiśniewski">P. Wiśniewski, "Giant anisotropic magnetoresistance and magnetothermopower in cubic 3:4 uranium pnictides" (2007) http://dx.doi.org/10.1063/1.2737904</ref>
 
In polycrystalline ferromagnetic materials, the AMR can only depend on the angle <math>\varphi=\psi-\theta</math> between the magnetization and current direction
and (as long as the resistivity of the material can be described by a rank-two tensor), it must follow<ref>E. de Ranieri et al., "Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As", New J. Phys. 10, 065003 (2008). http://dx.doi.org/10.1088/1367-2630/10/6/065003</ref>
 
<math>\rho(\theta) = \rho_\perp + (\rho_\parallel - \rho_\perp) \cos^2 \varphi </math>
 
where <math>\rho</math> is the (longitudinal) [[resistivity]] of the film and  <math>\rho_{\parallel,\perp}</math> are the resistivities for <math>\varphi=0</math> and <math>90^\circ</math>, respectively. Associated with longitudinal resistivity, there is also transversal resistivity dubbed (somewhat confusingly[[#Footnotes|[1]]]) the planar Hall effect. In monocrystals, resistivity <math>\rho</math> depends also on <math>\psi, \theta</math> individually.
 
To compensate for the non-linear characteristics and inability to detect the polarity of a magnetic field, the following structure is used for sensors. It consists of stripes of aluminum or gold placed on a thin film of [[permalloy]] (a ferromagnetic material exhibiting the AMR effect) inclined at an angle of 45°. This structure forces the current not to flow along the “easy axes” of thin film, but at an angle of 45°. The dependence of resistance now has a permanent offset which is linear around the null point. Because of its appearance, this sensor type is called '[[barber pole]]'.
 
The AMR effect is used in a wide array of sensors for measurement of Earth's magnetic field (electronic [[compass]]), for electric current measuring (by measuring the magnetic field created around the conductor), for traffic detection and for linear position and angle sensing. The biggest AMR sensor manufacturers are [[Honeywell]], [[NXP Semiconductors]], and [http://www.sensitec.com Sensitec GmbH].
 
==Footnotes==
 
*1. The (ordinary) [[Hall effect]] changes sign upon magnetic field reversal and it is an orbital effect (unrelated to spin) due to the Lorentz force. Transversal AMR (planar Hall effect<ref>H. X. Tang, R. K. Kawakami, D. D. Awschalom, and M. L. Roukes
Phys. Rev. Lett. 90, 107201 (2003). http://dx.doi.org/10.1103/PhysRevLett.90.107201 </ref>) does not change sign and it is caused by [[Spin–orbit interaction|spin-orbit interaction]].
 
==References==
<references/>
 
 
==See also==
{{wiktionary|magnetoresistance}}
{{commons category|magnetoresistance}}
 
* [[Giant magnetoresistance]]
* [[Colossal magnetoresistance]]
* [[Magnetoresistive random-access memory]]
<!--* [[Geometrical magnetoresistance]]
* [[Ballistic magnetoresistance]]-->
 
[[Category:Magnetic ordering]]
[[Category:Spintronics]]

Latest revision as of 16:28, 17 December 2014

Hello, dear friend! My name is Tangela. I smile that I can unify to the entire world. I live in Netherlands, in the south region. I dream to head to the different nations, to obtain familiarized with interesting individuals.

Feel free to surf to my website ... how to get free fifa 15 coins