Effective number of bits: Difference between revisions
→External links: update link |
en>Heron definition was entirely wrong; rewrote |
||
Line 1: | Line 1: | ||
In [[mathematical analysis]], the '''Schur test''', named after German mathematician [[Issai Schur]], is a bound on the <math>L^2\to L^2</math> [[operator norm]] of an [[integral operator]] in terms of its [[Schwartz kernel]] (see [[Schwartz kernel theorem]]). | |||
Here is one version.<ref>[[Paul Richard Halmos]] and Viakalathur Shankar Sunder, ''Bounded integral operators on <math>L^{2}</math> spaces'', Ergebnisse der Mathematik und ihrer Grenzgebiete (Results in Mathematics and Related Areas), vol. 96., Springer-Verlag, Berlin, 1978. Theorem 5.2.</ref> Let <math>X,\,Y</math> be two [[measurable space]]s (such as <math>\mathbb{R}^n</math>). Let <math>\,T</math> be an [[integral operator]] with the non-negative Schwartz kernel <math>\,K(x,y)</math>, <math>x\in X</math>, <math>y\in Y</math>: | |||
:<math>T f(x)=\int_Y K(x,y)f(y)\,dy.</math> | |||
If there exist functions <math>\,p(x)>0</math> and <math>\,q(x)>0</math> and numbers <math>\,\alpha,\beta>0</math> such that | |||
:<math> (1)\qquad \int_Y K(x,y)q(y)\,dy\le\alpha p(x) </math> | |||
for [[almost everywhere|almost all]] <math>\,x</math> and | |||
:<math> (2)\qquad \int_X p(x)K(x,y)\,dx\le\beta q(y)</math> | |||
for almost all <math>\,y</math>, then <math>\,T</math> extends to a [[continuous operator]] <math>T:L^2\to L^2</math> with the [[operator norm]] | |||
:<math> \Vert T\Vert_{L^2\to L^2} \le\sqrt{\alpha\beta}.</math> | |||
Such functions <math>\,p(x)</math>, <math>\,q(x)</math> are called the Schur test functions. | |||
In the original version, <math>\,T</math> is a matrix and <math>\,\alpha=\beta=1</math>.<ref>[[I. Schur]], ''Bemerkungen zur Theorie der Beschränkten Bilinearformen mit unendlich vielen Veränderlichen'', J. reine angew. Math. 140 (1911), 1–28.</ref> | |||
==Common usage and Young's inequality== | |||
A common usage of the Schur test is to take <math>\,p(x)=q(x)=1.</math> Then we get: | |||
:<math> | |||
\Vert T\Vert^2_{L^2\to L^2}\le | |||
\sup_{x\in X}\int_Y|K(x,y)| \, dy | |||
\cdot | |||
\sup_{y\in Y}\int_X|K(x,y)| \, dx. | |||
</math> | |||
This inequality is valid no matter whether the Schwartz kernel <math>\,K(x,y)</math> is non-negative or not. | |||
A similar statement about <math>L^p\to L^q</math> operator norms is known as [[Young's inequality]]:<ref>Theorem 0.3.1 in: C. D. Sogge, ''Fourier integral operators in classical analysis'', Cambridge University Press, 1993. ISBN 0-521-43464-5</ref> | |||
if | |||
:<math>\sup_x\Big(\int_Y|K(x,y)|^r\,dy\Big)^{1/r} + \sup_y\Big(\int_X|K(x,y)|^r\,dx\Big)^{1/r}\le C,</math> | |||
where <math>r\,</math> satisfies <math>\frac 1 r=1-\Big(\frac 1 p-\frac 1 q\Big)</math>, for some <math>1\le p\le q\le\infty</math>, then the operator <math>Tf(x)=\int_Y K(x,y)f(y)\,dy</math> extends to a continuous operator <math>T:L^p(Y)\to L^q(X)</math>, with <math>\Vert T\Vert_{L^p\to L^q}\le C.</math> | |||
==Proof== | |||
Using the [[Cauchy–Schwarz inequality]] and the inequality (1), we get: | |||
:<math> | |||
\begin{align} |Tf(x)|^2=\left|\int_Y K(x,y)f(y)\,dy\right|^2 | |||
&\le \left(\int_Y K(x,y)q(y)\,dy\right) | |||
\left(\int_Y \frac{K(x,y)f(y)^2}{q(y)} dy\right)\\ | |||
&\le\alpha p(x)\int_Y \frac{K(x,y)f(y)^2}{q(y)} \, dy. | |||
\end{align} | |||
</math> | |||
Integrating the above relation in <math>x</math>, using [[Fubini's Theorem]], and applying the inequality (2), we get: | |||
:<math> \Vert T f\Vert_{L^2}^2 | |||
\le \alpha \int_Y \left(\int_X p(x)K(x,y)\,dx\right) \frac{f(y)^2}{q(y)} \, dy | |||
\le\alpha\beta \int_Y f(y)^2 dy =\alpha\beta\Vert f\Vert_{L^2}^2. </math> | |||
It follows that <math>\Vert T f\Vert_{L^2}\le\sqrt{\alpha\beta}\Vert f\Vert_{L^2}</math> for any <math>f\in L^2(Y)</math>. | |||
==See also== | |||
* [[Hardy–Littlewood–Sobolev inequality]] | |||
==References== | |||
<references /> | |||
[[Category:Inequalities]] |
Latest revision as of 12:01, 26 September 2013
In mathematical analysis, the Schur test, named after German mathematician Issai Schur, is a bound on the operator norm of an integral operator in terms of its Schwartz kernel (see Schwartz kernel theorem).
Here is one version.[1] Let be two measurable spaces (such as ). Let be an integral operator with the non-negative Schwartz kernel , , :
If there exist functions and and numbers such that
for almost all and
for almost all , then extends to a continuous operator with the operator norm
Such functions , are called the Schur test functions.
In the original version, is a matrix and .[2]
Common usage and Young's inequality
A common usage of the Schur test is to take Then we get:
This inequality is valid no matter whether the Schwartz kernel is non-negative or not.
A similar statement about operator norms is known as Young's inequality:[3]
if
where satisfies , for some , then the operator extends to a continuous operator , with
Proof
Using the Cauchy–Schwarz inequality and the inequality (1), we get:
Integrating the above relation in , using Fubini's Theorem, and applying the inequality (2), we get:
See also
References
- ↑ Paul Richard Halmos and Viakalathur Shankar Sunder, Bounded integral operators on spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (Results in Mathematics and Related Areas), vol. 96., Springer-Verlag, Berlin, 1978. Theorem 5.2.
- ↑ I. Schur, Bemerkungen zur Theorie der Beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. reine angew. Math. 140 (1911), 1–28.
- ↑ Theorem 0.3.1 in: C. D. Sogge, Fourier integral operators in classical analysis, Cambridge University Press, 1993. ISBN 0-521-43464-5