Effective number of bits: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
External links: update link
 
en>Heron
definition was entirely wrong; rewrote
 
Line 1: Line 1:
Hello and welcome. My title is Numbers Wunder. To do aerobics is a thing that I'm completely addicted to. For years he's been residing in North Dakota and his family enjoys it. Managing people is his profession.<br><br>Feel free to surf to my web-site - std testing at home ([http://blogzaa.com/blogs/post/9199 mouse click the up coming webpage])
In [[mathematical analysis]], the '''Schur test''', named after German mathematician [[Issai Schur]], is a bound on the <math>L^2\to L^2</math> [[operator norm]] of an [[integral operator]] in terms of its [[Schwartz kernel]] (see [[Schwartz kernel theorem]]).
 
Here is one version.<ref>[[Paul Richard Halmos]] and Viakalathur Shankar Sunder, ''Bounded integral operators on <math>L^{2}</math> spaces'', Ergebnisse der Mathematik und ihrer Grenzgebiete (Results in Mathematics and Related Areas), vol. 96., Springer-Verlag, Berlin, 1978. Theorem 5.2.</ref>  Let <math>X,\,Y</math> be two [[measurable space]]s  (such as <math>\mathbb{R}^n</math>). Let <math>\,T</math> be an [[integral operator]] with the non-negative Schwartz kernel <math>\,K(x,y)</math>, <math>x\in X</math>, <math>y\in Y</math>:
 
:<math>T f(x)=\int_Y K(x,y)f(y)\,dy.</math>
 
If there exist functions <math>\,p(x)>0</math> and <math>\,q(x)>0</math> and numbers <math>\,\alpha,\beta>0</math> such that
 
:<math> (1)\qquad \int_Y K(x,y)q(y)\,dy\le\alpha p(x) </math>
 
for [[almost everywhere|almost all]] <math>\,x</math> and
 
:<math> (2)\qquad \int_X p(x)K(x,y)\,dx\le\beta q(y)</math>
 
for almost all <math>\,y</math>, then <math>\,T</math> extends to a [[continuous operator]] <math>T:L^2\to L^2</math> with the [[operator norm]]
 
:<math> \Vert T\Vert_{L^2\to L^2} \le\sqrt{\alpha\beta}.</math>
 
Such functions <math>\,p(x)</math>, <math>\,q(x)</math> are called the Schur test functions.
 
In the original version, <math>\,T</math> is a matrix and <math>\,\alpha=\beta=1</math>.<ref>[[I. Schur]], ''Bemerkungen zur Theorie der Beschränkten Bilinearformen mit unendlich vielen Veränderlichen'', J. reine angew. Math. 140 (1911), 1–28.</ref>
 
==Common usage and Young's inequality==
 
A common usage of the Schur test is to take <math>\,p(x)=q(x)=1.</math> Then we get:
 
:<math>
\Vert T\Vert^2_{L^2\to L^2}\le
\sup_{x\in X}\int_Y|K(x,y)| \, dy
\cdot
\sup_{y\in Y}\int_X|K(x,y)| \, dx.
</math>
 
This inequality is valid no matter whether the Schwartz kernel <math>\,K(x,y)</math> is non-negative or not.
 
A similar statement about <math>L^p\to L^q</math> operator norms is known as [[Young's inequality]]:<ref>Theorem 0.3.1 in: C. D. Sogge, ''Fourier integral operators in classical analysis'', Cambridge University Press, 1993. ISBN 0-521-43464-5</ref>
 
if
 
:<math>\sup_x\Big(\int_Y|K(x,y)|^r\,dy\Big)^{1/r} + \sup_y\Big(\int_X|K(x,y)|^r\,dx\Big)^{1/r}\le C,</math>
 
where <math>r\,</math> satisfies <math>\frac 1 r=1-\Big(\frac 1 p-\frac 1 q\Big)</math>, for some <math>1\le p\le q\le\infty</math>, then the operator <math>Tf(x)=\int_Y K(x,y)f(y)\,dy</math> extends to a continuous operator <math>T:L^p(Y)\to L^q(X)</math>, with <math>\Vert T\Vert_{L^p\to L^q}\le C.</math>
 
==Proof==
 
Using the [[Cauchy–Schwarz inequality]] and the inequality (1), we get:
 
:<math>
\begin{align} |Tf(x)|^2=\left|\int_Y K(x,y)f(y)\,dy\right|^2
&\le \left(\int_Y K(x,y)q(y)\,dy\right)
\left(\int_Y \frac{K(x,y)f(y)^2}{q(y)} dy\right)\\
&\le\alpha p(x)\int_Y \frac{K(x,y)f(y)^2}{q(y)} \, dy.
\end{align}
</math>
 
Integrating the above relation in <math>x</math>, using [[Fubini's Theorem]], and applying the inequality (2), we get:
 
:<math> \Vert T f\Vert_{L^2}^2
\le \alpha \int_Y \left(\int_X p(x)K(x,y)\,dx\right) \frac{f(y)^2}{q(y)} \, dy
\le\alpha\beta \int_Y f(y)^2 dy =\alpha\beta\Vert f\Vert_{L^2}^2. </math>
 
It follows that <math>\Vert T f\Vert_{L^2}\le\sqrt{\alpha\beta}\Vert f\Vert_{L^2}</math> for any <math>f\in L^2(Y)</math>.
 
==See also==
 
* [[Hardy–Littlewood–Sobolev inequality]]
 
==References==
<references />
 
[[Category:Inequalities]]

Latest revision as of 12:01, 26 September 2013

In mathematical analysis, the Schur test, named after German mathematician Issai Schur, is a bound on the L2L2 operator norm of an integral operator in terms of its Schwartz kernel (see Schwartz kernel theorem).

Here is one version.[1] Let X,Y be two measurable spaces (such as n). Let T be an integral operator with the non-negative Schwartz kernel K(x,y), xX, yY:

Tf(x)=YK(x,y)f(y)dy.

If there exist functions p(x)>0 and q(x)>0 and numbers α,β>0 such that

(1)YK(x,y)q(y)dyαp(x)

for almost all x and

(2)Xp(x)K(x,y)dxβq(y)

for almost all y, then T extends to a continuous operator T:L2L2 with the operator norm

TL2L2αβ.

Such functions p(x), q(x) are called the Schur test functions.

In the original version, T is a matrix and α=β=1.[2]

Common usage and Young's inequality

A common usage of the Schur test is to take p(x)=q(x)=1. Then we get:

TL2L22supxXY|K(x,y)|dysupyYX|K(x,y)|dx.

This inequality is valid no matter whether the Schwartz kernel K(x,y) is non-negative or not.

A similar statement about LpLq operator norms is known as Young's inequality:[3]

if

supx(Y|K(x,y)|rdy)1/r+supy(X|K(x,y)|rdx)1/rC,

where r satisfies 1r=1(1p1q), for some 1pq, then the operator Tf(x)=YK(x,y)f(y)dy extends to a continuous operator T:Lp(Y)Lq(X), with TLpLqC.

Proof

Using the Cauchy–Schwarz inequality and the inequality (1), we get:

|Tf(x)|2=|YK(x,y)f(y)dy|2(YK(x,y)q(y)dy)(YK(x,y)f(y)2q(y)dy)αp(x)YK(x,y)f(y)2q(y)dy.

Integrating the above relation in x, using Fubini's Theorem, and applying the inequality (2), we get:

TfL22αY(Xp(x)K(x,y)dx)f(y)2q(y)dyαβYf(y)2dy=αβfL22.

It follows that TfL2αβfL2 for any fL2(Y).

See also

References

  1. Paul Richard Halmos and Viakalathur Shankar Sunder, Bounded integral operators on L2 spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (Results in Mathematics and Related Areas), vol. 96., Springer-Verlag, Berlin, 1978. Theorem 5.2.
  2. I. Schur, Bemerkungen zur Theorie der Beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. reine angew. Math. 140 (1911), 1–28.
  3. Theorem 0.3.1 in: C. D. Sogge, Fourier integral operators in classical analysis, Cambridge University Press, 1993. ISBN 0-521-43464-5